En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Variance reduction approaches for stochastic homogenization

Sélection Signaler une erreur
Multi angle
Auteurs : Legoll, Frédéric (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The simulation of random heterogeneous materials is often very expensive. For instance, in a homogenization setting, the homogenized coefficient is defined from the so-called corrector function, that solves a partial differential equation set on the entire space. This is in contrast with the periodic case, where he corrector function solves an equation set on a single periodic cell. As a consequence, in the stochastic setting, the numerical approximation of the corrector function (and therefore of the homogenized coefficient) is a challenging computational task.
In practice, the corrector problem is solved on a truncated domain, and the exact homogenized coefficient is recovered only in the limit of infinitely large domains. As a consequence of this truncation, the approximated homogenized coefficient turns out to be stochastic, even though the exact homogenized coefficient is deterministic. One then has to resort to Monte-Carlo methods, in order to compute the expectation of the (approximated, apparent) homogenized coefficient within a good accuracy. Variance reduction questions thus naturally come into play, in order to increase the accuracy (e.g. reduce the size of the confidence interval) for a fixed computational cost. In this talk, we will present some variance reduction approaches to address this question.

Codes MSC :
35B27 - Homogenization; equations in media with periodic structure [See also 74Qxx, 76M50]
35R60 - PDEs with randomness, stochastic PDE
60Hxx - Stochastic analysis, See also {58G32}

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 28/05/14
    Date de captation : 07/08/13
    Sous collection : Research talks
    arXiv category : Analysis of PDEs ; Numerical Analysis
    Domaine : Probability & Statistics ; PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:44:00
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2013-08-07_Legoll.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS : Modelling and simulation of complex systems : stochastic and deterministic approaches / CEMRACS : Modéliser et simuler la complexité : approches stochastiques et déterministes
Organisateurs de la rencontre : Champagnat, Nicolas ; Lelièvre, Tony ; Nouy, Anthony
Dates : 22/07/2013 - 30/08/2013
Année de la rencontre : 2013
URL Congrès : http://smai.emath.fr/cemracs/cemracs13/i...

Données de citation

DOI : 10.24350/CIRM.V.18586803
Citer cette vidéo: Legoll, Frédéric (2013). Variance reduction approaches for stochastic homogenization. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18586803
URI : http://dx.doi.org/10.24350/CIRM.V.18586803

Bibliographie



Sélection Signaler une erreur