Authors : Grohs, Philipp (Author of the conference)
CIRM (Publisher )
Abstract :
Wavelets are standard tool in signal- and image processing. It has taken a long time until wavelet methods have been accepted in numerical analysis as useful tools for the numerical discretization of certain PDEs. In the signal- and image processing community several new frame constructions have been introduced in recent years (curvelets, shearlets, ridgelets, ...). Question: Can they be used also in numerical analysis? This talk: Small first step.
MSC Codes :
42C15
- General harmonic expansions, frames
42C40
- Wavelets and other special systems
65Txx
- Numerical methods in Fourier analysis
Film maker : Hennenfent, Guillaume
Language : English
Available date : 12/03/15
Conference Date : 24/01/15
Series : Special events ; 30 Years of Wavelets
arXiv category : Classical Analysis and ODEs
Mathematical Area(s) : Analysis and its Applications
Format : MP4 (.mp4) - HD
Video Time : 00:32:50
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2015-01-24_Grohs.mp4
|
Event Title : 30 years of wavelets / 30 ans des ondelettes Event Organizers : Feichtinger, Hans G. ; Torrésani, Bruno Dates : 23/01/15 - 24/01/15
Event Year : 2015
Event URL : https://www.chairejeanmorlet.com/1523.html
DOI : 10.24350/CIRM.V.18720803
Cite this video as:
Grohs, Philipp (2015). Somes perspectives of computational harmonic analysis in numerics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18720803
URI : http://dx.doi.org/10.24350/CIRM.V.18720803
|
Bibliography
- [1] Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q, Schwab, C., & Welper, G. (2014). Efficient resolution of anisotropic structures. In S. Dahlke, et al. (Eds.), Extraction of quantifiable information from complex systems (pp. 25-51). Cham: Springer. (Lecture Notes in Computational Science and Engineering, 102) - http://dx.doi.org/10.1007/978-3-319-08159-5_2
- [2] Etter, S., Grohs, P., & Obermeier, A. (2015). FFRT: a fast finite ridgelet transform for radiative transport. Multiscale Modeling & Simulation, 13(1), 1-42 - http://dx.doi.org/10.1137/140977722
- [3] Fonn, E., Grohs, P., & Hiptmair, R. (2014). Polar spectral scheme for the spatially homogeneous Boltzmann equation. Seminar for Applied Mathematics, ETH Zürich, report 2014-13 - http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-13.pdf
- [4] Grohs, P., & Obermeier, A. (2014). Optimal adaptive ridgelet schemes for linear transport equations. Seminar for Applied Mathematics, ETH Zürich, report 2014-21 - http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-21.pdf
- [5] Kitzler, G., & Schöberl, J. (2013). Efficient spectral methods for the spatially homogeneous Boltzmann equation. Institute for Analysis and Scientific Computing, Vienna University of Technology, report 13/2013 - http://www.asc.tuwien.ac.at/preprint/2013/asc13x2013.pdf