https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Graph regularity and incidence phenomena in distal structures
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Graph regularity and incidence phenomena in distal structures

Sélection Signaler une erreur
Post-edited
Auteurs : Chernikov, Artem (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
homogeneous subsets semialgebraic graphs o-minimal structures not the independence property (NIP) fields of positive characteristic distality Keisler measures generically stable measures distal Ramsey Szemerédi regularity lemma classification of regularity lemmas distal regularity lemma Erdos-Hajnal property Questions

Résumé : In recent papers by Alon et al. and Fox et al. it is demonstrated that families of graphs with a semialgebraic edge relation of bounded complexity have strong regularity properties and can be decomposed into very homogeneous semialgebraic pieces up to a small error (typical example is the incidence relation between points and lines on a real plane, or higher dimensional analogues). We show that in fact the theory can be developed for families of graphs definable in a structure satisfying a certain model theoretic property called distality, with respect to a large class of measures (this applies in particular to graphs definable in arbitrary o-minimal theories and in p-adics). (Joint work with Sergei Starchenko.)

Codes MSC :
03C45 - Classification theory, stability and related concepts [See also 03C48]
03C60 - Model-theoretic algebra
03C64 - Model theory of ordered structures; o-minimality

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 22/04/15
    Date de captation : 07/04/15
    Sous collection : Research talks
    arXiv category : Logic ; Combinatorics
    Domaine : Logic and Foundations
    Format : QuickTime (.mov) Durée : 00:49:25
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-04-07_Chernikov.mp4

Informations sur la Rencontre

Nom de la rencontre : Model Theory, Difference/Differential Equations and Applications / Théorie des modèles, équations différentielles et aux différences et applications
Organisateurs de la rencontre : Beyarslan, Özlem ; Hils, Martin ; Martin-Pizarro, Amador
Dates : 07/04/15 - 10/04/15
Année de la rencontre : 2015
URL Congrès : http://conferences.cirm-math.fr/1194.html

Données de citation

DOI : 10.24350/CIRM.V.18745203
Citer cette vidéo: Chernikov, Artem (2015). Graph regularity and incidence phenomena in distal structures. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18745203
URI : http://dx.doi.org/10.24350/CIRM.V.18745203

Bibliographie

  • Alon, N., Pach, J., Pinchasi, R., Radoicic, R., & Sharir, M. (2005). Crossing patterns of semi-algebraic sets. Journal of Combinatorial Theory. Series A, 111(2), 310-326 - http://dx.doi.org/10.1016/j.jcta.2004.12.008

  • Basu, S. (2010). Combinatorial complexity in o-minimal geometry. Proceedings of the London Mathematical Society. Third Series, 100(2), 405-428 - http://dx.doi.org/10.1112/plms/pdp031

  • Chernikov, A., & Starchenko, S. Regularity lemma for distal graphs. Preprint -

  • Chernikov, A., & Simon, P. (2012). Externally definable sets and dependent pairs II. < arXiv:1202.2650> - http://arxiv.org/abs/1202.2650

  • Fox, J., Pach, J., & Suk, A. (2015). A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing. - http://arxiv.org/abs/1502.01730

  • Fox, J., Gromov, M., Lafforgue, V., Naor, A., & Pach, J. (2012). Overlap properties of geometric expanders. Journal für die Reine und Angewandte Mathematik, 671, 49-83 - http://dx.doi.org/10.1515/CRELLE.2011.157

  • Hrushovski, E., Pillay, A., & Simon, P. (2013). Generically stable and smooth measures in NIP theories. Transactions of the American Mathematical Society, 365(5), 2341-2366 - http://dx.doi.org/10.1090/S0002-9947-2012-05626-1

  • Simon, P. (2013). Distal and non-distal NIP theories. Annals of Pure and Applied Logic, 164(3), 294-318 - http://dx.doi.org/10.1016/j.apal.2012.10.015



Sélection Signaler une erreur