En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions

Sélection Signaler une erreur
Multi angle
Auteurs : Brandolese, Lorenzo (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We study the global existence of the parabolic-parabolic Keller–Segel system in $\mathbb{R}^{d}$. We prove that initial data of arbitrary size give rise to global solutions provided the diffusion parameter $\tau$ is large enough in the equation for the chemoattractant. This fact was observed before in the two-dimensional case by Biler, Guerra and Karch (2015) and Corrias, Escobedo and Matos (2014). Our analysis improves earlier results and extends them to any dimension d ≥ 3. Our size conditions on the initial data for the global existence of solutions seem to be optimal, up to a logarithmic factor in $\tau$ , when $\tau\gg 1$: we illustrate this fact by introducing two toy models, both consisting of systems of two parabolic equations, obtained after a slight modification of the nonlinearity of the usual Keller–Segel system. For these toy models, we establish in a companion paper finite time blowup for a class of large solutions.

Keywords : chemotaxis; well-posedness

Codes MSC :
92C17 - Cell movement (chemotaxis, etc.)
35Q92 - PDEs in connection with biology and other natural sciences

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2576/Slides/brandolese.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 13/06/2022
    Date de captation : 12/05/2022
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:29:10
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05-12_Brandolese.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair 2022 - Conference: Nonlinear PDEs in Fluid Dynamics / Chaire Jean-Morlet 2022 - Conférence : EDP non-linéaires en dynamique des fluides
Organisateurs de la rencontre : Danchin, Raphaël ; Hieber, Matthias ; Monniaux, Sylvie ; Perrin, Charlotte
Dates : 09/05/2022 - 13/05/2022
Année de la rencontre : 2022
URL Congrès : https://www.chairejeanmorlet.com/2576.html

Données de citation

DOI : 10.24350/CIRM.V.19916603
Citer cette vidéo: Brandolese, Lorenzo (2022). Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19916603
URI : http://dx.doi.org/10.24350/CIRM.V.19916603

Voir aussi

Bibliographie

  • BILER, Piotr, BORITCHEV, Alexandre, et BRANDOLESE, Lorenzo. Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. arXiv preprint arXiv:2203.09130, 2022. - https://arxiv.org/abs/2203.09130



Imagette Video

Sélection Signaler une erreur