En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Automatic de Rhamness of p-adic local systems and Galois action on the pro-algebraic fundamental group

Sélection Signaler une erreur
Multi angle
Auteurs : Petrov, Alexander (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Given a $p$-adic local system $L$ on a smooth algebraic variety $X$ over a finite extension $K$ of $Q_{p}$, it is always possible to find a de Rham local system $M$ on $X$ such that the underlying local system $\left.L\right|_{X_{\bar{K}}}$ embeds into $\left.M\right|_{X_{\bar{K}}}$. I will outline the proof that relies on the $p$-adic Riemann-Hilbert correspondence of Diao-Lan-Liu-Zhu. As a consequence, the action of the Galois group $G_{K}$ on the pro-algebraic completion of the étale fundamental group of $X_{\bar{K}}$ is de Rham, in the sense that every finite-dimensional subrepresentation of the ring of regular functions on that group scheme is de Rham. This implies that every finite-dimensional subrepresentation of the ring of regular functions on the pro-algebraic completion of the geometric pi $i_{1}$ of a smooth variety over a number field satisfies the assumptions of the Fontaine-Mazur conjecture. Complementing this result, I will sketch a proof of the fact that every semi-simple representation of $G a l(\bar{Q} / Q)$ arising from geometry is a subquotient of the ring of regular functions on the pro-algebraic completion of the fundamental group of the projective line with 3 punctures.

Keywords : p-adic Hodge theory; local systems; arithmetic fundamental groups; Galois representations

Codes MSC :
14D10 - Arithmetic ground fields (finite, local, global)
14F35 - Homotopy theory; fundamental groups
14G20 - Local ground fields

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 27/06/2022
    Date de captation : 30/05/2022
    Sous collection : Research talks
    arXiv category : Algebraic Geometry ; Number Theory
    Domaine : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 01:04:45
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05-30_Petrov.mp4

Informations sur la Rencontre

Nom de la rencontre : Franco-Asian Summer School on Arithmetic Geometry in Luminy / Ecole d'été franco-asiatique sur la géométrie arithmétique à Luminy
Organisateurs de la rencontre : Abbes, Ahmed ; Mézard, Ariane ; Saito, Takeshi ; Zheng, Weizhe
Dates : 30/05/2022 - 03/06/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2534.html

Données de citation

DOI : 10.24350/CIRM.V.19928203
Citer cette vidéo: Petrov, Alexander (2022). Automatic de Rhamness of p-adic local systems and Galois action on the pro-algebraic fundamental group. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19928203
URI : http://dx.doi.org/10.24350/CIRM.V.19928203

Voir aussi

Bibliographie

  • PETROV, Alexander. Geometrically irreducible $ p $-adic local systems are de Rham up to a twist. arXiv preprint arXiv:2012.13372, 2020. - https://arxiv.org/abs/2012.13372

  • PETROV, Alexander. Universality of the Galois action on the fundamental group of $\mathbb {P}^ 1\setminus\{0, 1,\infty\} $. arXiv preprint arXiv:2109.09301, 2021. - https://arxiv.org/abs/2109.09301



Imagette Video

Sélection Signaler une erreur