Auteurs : Porretta, Alessio (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
We discuss properties of the viscous Hamilton-Jacobi equation$$\begin{cases}u_{t}-\Delta u=|D u|^{p} & \text { in }(0, \infty) \times \Omega, \\ u=0 & \text { in }(0, \infty) \times \partial \Omega, \\ u(0)=u_{0} & \text { in } \Omega,\end{cases}$$in the super-quadratic case $p>2$. Here $\Omega$ is a bounded domain in $\mathbf{R}^{\mathbf{N}}$. In the super-quadratic regime, solutions may be continuous but with a gradient blow up; in this case the second order equation exhibits very peculiar phenomena. Some properties are similar to first order problems, such as loss of boundary conditions and appearance of singularities, but the presence of diffusion let singularities appear and disappear, in a very unusual way. In the talk I will present results obtained in collaboration with Philippe Souplet which describe the qualitative behavior of the solution, starting from smooth initial data. This includes the analysis of blow-up rates, blow-up profiles, life after blow-up, loss and recovery of boundary conditions.
Keywords : Viscous Hamilton-Jacobi eqautions; gradient blow-up
Codes MSC :
35B40
- Asymptotic behavior of solutions of PDE
35B60
- Continuation and prolongation of solutions of PDE, See also {58A15, 58A17, 58Hxx}
35B44
- Blow-up (PDE)
|
Informations sur la Rencontre
Nom de la rencontre : Inverse Problems and Control for PDEs and the Hamilton-Jacobi Equation / Problèmes inverses et contrôle des EDP, et équation de Hamilton-Jacobi Organisateurs de la rencontre : Doubova, Anna ; Floridia, Giuseppe ; Soccorsi, Eric ; Yamamoto, Masahiro Dates : 13/06/2022 - 17/06/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2561.html
DOI : 10.24350/CIRM.V.19934003
Citer cette vidéo:
Porretta, Alessio (2022). Viscous Hamilton-Jacobi equations in the superquadratic case. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19934003
URI : http://dx.doi.org/10.24350/CIRM.V.19934003
|
Voir aussi
Bibliographie
- PORRETTA, Alessio et SOUPLET, Philippe. Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Annales de l'Institut Henri Poincaré C, 2017, vol. 34, no 7, p. 1913-1923. - https://doi.org/10.1016/j.anihpc.2017.02.001
- PORRETTA, Alessio et SOUPLET, Philippe. Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation. Journal de Mathématiques Pures et Appliquées, 2020, vol. 133, p. 66-117. - https://doi.org/10.1016/j.matpur.2019.02.014