Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
The automorphism group of a compact Kähler manifold satisfies Tits alternative: any subgroup either admits a solvable subgroup of finite index or contains a free non-abelian group of two generators (Campana-WangZhang). In the first case, this group cannot be too big. Some algebraic (rational) manifolds with special automorphisms admit infinitely many nonequivalent real forms. This talk is based on my (old and recent) works with F. Hu, H.-Y. Lin, V.-A. Nguyen, K. Oguiso, N. Sibony, X. Yu, D.-Q. Zhang.
Keywords : automorphisms of compact Kähler manifolds; zero entropy automorphisms; dynamical filtrations; polynomial growth; derived length
Codes MSC :
14J50
- Automorphisms of surfaces and higher-dimensional varieties
32H50
- Iteration problems
32M05
- Complex Lie groups, automorphism groups of complex spaces, See also {22E10}
37B40
- Topological entropy
|
Informations sur la Rencontre
Nom de la rencontre : Complex Geometry, Dynamical Systems and Foliation Theory / Géométrie complexe, systèmes dynamiques et théorie de feuilletages Dates : 17/10/2022 - 21/10/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2639.html
DOI : 10.24350/CIRM.V.19969103
Citer cette vidéo:
(2022). On the automorphisms of compact Kähler manifolds. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19969103
URI : http://dx.doi.org/10.24350/CIRM.V.19969103
|
Voir aussi
Bibliographie
- DINH, Tien-Cuong et SIBONY, Nessim. Groupes commutatifs d'automorphismes d'une variété kählérienne compacte. Duke Mathematical Journal, 2004, vol. 123, no 2, p. 311-328. - http://dx.doi.org/10.1215/S0012-7094-04-12323-1
- DINH, Tien-Cuong., NGUYEN, Viêt-Anh. The mixed Hodge–Riemann bilinear relations for compact Kähler manifolds. GAFA, Geom. funct. anal. , 2006, vol.16, p. 838–849. - http://dx.doi.org/10.1007/s00039-006-0572-9
- DINH, Tien-Cuong, HU, Fei, et ZHANG, De-Qi. Compact Kähler manifolds admitting large solvable groups of automorphisms. Advances in Mathematics, 2015, vol. 281, p. 333-352. - https://doi.org/10.1016/j.aim.2015.05.002
- DINH, Tien-Cuong et OGUISO, Keiji. A surface with discrete and nonfinitely generated automorphism group. Duke Mathematical Journal, 2019, vol. 168, no 6, p. 941-966. - http://dx.doi.org/10.1215/00127094-2018-0054
- DINH, Tien-Cuong, LIN, Hsueh-Yung, OGUISO, Keiji, et al. Zero entropy automorphisms of compact Kähler manifolds and dynamical filtrations. Geometric and Functional Analysis, 2022, p. 1-27. - http://dx.doi.org/10.1007/s00039-022-00599-3
- DINH, Tien-Cuong, OGUISO, Keiji, et YU, Xun. Smooth complex projective rational surfaces with infinitely many real forms. arXiv preprint arXiv:2106.05687, 2021. - https://doi.org/10.48550/arXiv.2106.05687