En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Proper actions of Lie groups and numeric invariants of Dirac operators

Bookmarks Report an error
Multi angle
Authors : Piazza, Paolo (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I shall explain how to define and investigate primary and secondary invariants of G-invariant Dirac operators on a cocompact G-proper manifold, with G a connected real reductive Lie group. This involves cyclic cohomology and Ktheory. After treating the case of cyclic cocycles associated to elements in the differentiable cohomology of G I will move to delocalized cyclic cocycles, in particular, I will explain the challenges in defining the delocalized eta invariant associated to the orbital integral defined by a semisimple element g in G and in showing that such an invariant enters in an Atiyah-Patodi-Singer index theorem for cocompact G-proper manifolds. I will then consider a higher version of these results, based on the Song-Tang higher orbital integrals associated to a cuspidal parabolic subgroup P¡G with Langlands decomposition P=MAN and a semisimple element g in M. This talk is based on articles with Hessel Posthuma and with Hessel Postrhuma, Yanli Song and Xiang Tang.

Keywords : Lie groups; proper actions; k-theory; cyclic cohomology; Dirac operators

MSC Codes :
19K56 - Index theory, See also {58G12}
58J20 - Index theory and related fixed point theorems
58J42 - Noncommutative global analysis, noncommutative residues

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 12/04/2022
    Conference Date : 31/03/2022
    Subseries : Research talks
    arXiv category : Differential Geometry ; K-Theory and Homology
    Mathematical Area(s) : Geometry ; Lie Theory and Generalizations
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:16
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-03-31_Piazza.mp4

Information on the Event

Event Title : Geometry and analysis on non-compact manifolds / Géométrie et analyse sur les variétés non compactes
Event Organizers : Ammann, Bernd ; Carron, Gilles ; Groe, Nadine ; Nistor, Victor
Dates : 28/03/2022 - 01/04/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2548.html

Citation Data

DOI : 10.24350/CIRM.V.19902203
Cite this video as: Piazza, Paolo (2022). Proper actions of Lie groups and numeric invariants of Dirac operators. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19902203
URI : http://dx.doi.org/10.24350/CIRM.V.19902203

See Also

Bibliography

  • PIAZZA, Paolo et POSTHUMA, Hessel B. Higher genera for proper actions of Lie groups. Annals of K-Theory, 2019, vol. 4, no 3, p. 473-504. - https://doi.org/10.2140/akt.2019.4.473

  • PIAZZA, Paolo et POSTHUMA, Hessel B. Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary. Annals of K-Theory, 2022, vol. 6, no 4, p. 713-782. - https://doi.org/10.2140/akt.2021.6.713

  • PIAZZA, Paolo, POSTHUMA, Hessel, SONG, Yanli, et al. Higher orbital integrals, rho numbers and index theory. arXiv preprint arXiv:2108.00982, 2021. - https://arxiv.org/abs/2108.00982



Bookmarks Report an error