Auteurs : Le Maître, Olivier (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Stochastic models are used in many scientific fields, including mechanics, physics, life sciences, queues and social-network studies, chemistry. Stochastic modeling is necessary when deterministic ones cannot capture features of the dynamics, for instance, to represent effects of unresolved small-scale fluctuations, or when systems are subjected to important inherent noise. Often, stochastic models are not completely known and involve some calibrated parameters that should be considered as uncertain. In this case, it is critical to assess the impact of the uncertain model parameters on the stochastic model predictions. This is usually achieved by performing a sensitivity analysis (SA) which characterizes changes in a model output when the uncertain parameters are varied. In the case of a stochastic model, one classically applies the SA to statistical moments of the prediction, estimating, for instance, the derivatives with respect to the uncertain parameters of the output mean and variance. In this presentation, we introduce new approaches of SA in a stochastic system based on variance decomposition methods (ANOVA, Sobol). Compared to previous methods, our SA methods are global, with respect to both the parameters and stochasticity, and decompose the variance into stochastic, parametric and mixed contributions.
We consider first the case of uncertain Stochastic Differential Equations (SDE), that is systems with external noisy forcing and uncertain parameters. A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed to approximate the SDE solution. We first use a Galerkin formalism to determine the expansion coefficients, leading to a hierarchy of SDEs. Under the mild assumption that the noise and uncertain parameters are independent, the Galerkin formalism naturally separates parametric uncertainty and stochastic forcing dependencies, enabling an orthogonal decomposition of the variance, and consequently identify contributions arising
from the uncertainty in parameters, the stochastic forcing, and a coupled term. Non-intrusive approaches are subsequently considered for application to more complex systems hardly amenable to Galerkin projection. We also discuss parallel implementations and application to derived quantity of interest, in particular, a novel sampling strategy for non-smooth quantities of interest but smooth SDE solution. Numerical examples are provided to illustrate the output of the SA and the computational complexity of the method.
Second, we consider the case of stochastic simulators governed by a set of reaction channels with stochastic dynamics. Reformulating the system dynamics in terms of independent standardized Poisson processes permits the identification of individual realizations of each reaction channel dynamic and a quantitative characterization of the inherent stochasticity sources. By judiciously exploiting the inherent stochasticity of the system, we can then compute the global sensitivities associated with individual reaction channels, as well as the importance of channel interactions. This approach is subsequently extended to account for the effects of uncertain parameters and we propose dedicated algorithms to perform the Sobols decomposition of the variance into contributions from an arbitrary subset of uncertain parameters and stochastic reaction channels. The algorithms are illustrated in simplified systems, including the birth-death, Schlgl, and Michaelis-Menten models. The sensitivity analysis output is also contrasted with a local derivative-based sensitivity analysis method.
Codes MSC :
60H35
- Computational methods for stochastic equations
65C30
- Stochastic differential and integral equations
65D15
- Algorithms for functional approximation
Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs17/Slides/maitre.pdf
|
Informations sur la Rencontre
Nom de la rencontre : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen Organisateurs de la rencontre : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme Dates : 17/07/17 - 25/08/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1556.html
DOI : 10.24350/CIRM.V.19201403
Citer cette vidéo:
Le Maître, Olivier (2017). Global sensitivity analysis in stochastic systems. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19201403
URI : http://dx.doi.org/10.24350/CIRM.V.19201403
|
Voir aussi
-
[Multi angle]
Forward and backward simulation of Euler scheme
/ Auteur de la Conférence Gobet, Emmanuel.
-
[Multi angle]
Stochastic variational inequalities for random mechanics
/ Auteur de la Conférence Mertz, Laurent.
-
[Multi angle]
Mean field type control with congestion
/ Auteur de la Conférence Laurière, Mathieu.
-
[Multi angle]
On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications
/ Auteur de la Conférence Silva Álvarez, Francisco José.
-
[Multi angle]
Project evaluation under uncertainty
/ Auteur de la Conférence Zubelli, Jorge P..
-
[Multi angle]
Some asymptotic results about American options and volativity
/ Auteur de la Conférence De Marco, Stefano.
-
[Multi angle]
Projected particle methods for solving McKean Vlasov SDEs
/ Auteur de la Conférence Belomestny, Denis.
-
[Multi angle]
Splitting algorithm for nested events
/ Auteur de la Conférence Goudenège, Ludovic.
-
[Multi angle]
Lecture 2: Introduction to HPC - MPI: design of parallel program and MPI
/ Auteur de la Conférence Lelong, Jérôme.
-
[Multi angle]
Lecture 1: Introduction to HPC, random generation, and OpenMP
/ Auteur de la Conférence Lelong, Jérôme.
-
[ Post-edited]
Numerical methods for mean field games - Lecture 2: Monotone finite difference schemes
/ Auteur de la Conférence Achdou, Yves.
-
[Multi angle]
Numerical methods for mean field games - Lecture 3: Variational MFG and related algorithms for solving the discrete system of nonlinear equations
/ Auteur de la Conférence Achdou, Yves.
-
[Multi angle]
Numerical methods for mean field games - Lecture 1: Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions
/ Auteur de la Conférence Achdou, Yves.
-
[Multi angle]
Metamodels for uncertainty quantification and reliability analysis
/ Auteur de la Conférence Marelli, Stefano.
-
[Multi angle]
Subsurface flow with uncertainty : applications and numerical analysis issues
/ Auteur de la Conférence Charrier, Julia.
-
[Multi angle]
Dynamic formulations of optimal transportation and variational MFGs
/ Auteur de la Conférence Benamou, Jean-David.
-
[Multi angle]
Least squares regression Monte Carlo for approximating BSDES and semilinear PDES
/ Auteur de la Conférence Turkedjiev, Plamen.
-
[Multi angle]
Bandits in auctions (& more)
/ Auteur de la Conférence Perchet, Vianney.
-
[Multi angle]
Multilevel and multi-index sampling methods with applications - Lecture 2: Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation
/ Auteur de la Conférence Tempone, Raul.
-
[Multi angle]
Multilevel and multi-index sampling methods with applications - Lecture 1: Adaptive strategies for Multilevel Monte Carlo
/ Auteur de la Conférence Tempone, Raul.
-
[Multi angle]
Model-free control and deep learning
/ Auteur de la Conférence Bellemare, Marc.
-
[Multi angle]
Optimal vector quantization: from signal processing to clustering and numerical probability
/ Auteur de la Conférence Pagès, Gilles.
-
[Multi angle]
The Metropolis Hastings algorithm: introduction and optimal scaling of the transient phase
/ Auteur de la Conférence Jourdain, Benjamin.
-
[Multi angle]
Branching for PDEs
/ Auteur de la Conférence Warin, Xavier.
-
[Multi angle]
On the interplay between kinetic theory and game theory
/ Auteur de la Conférence Degond, Pierre.
-
[Multi angle]
Particle algorithm for McKean SDE: a short review on numerical analysis
/ Auteur de la Conférence Bossy, Mireille.
-
[Multi angle]
Cubature methods and applications
/ Auteur de la Conférence Crisan, Dan.
-
[Multi angle]
Capacity expansion games with application to competition in power generation investments
/ Auteur de la Conférence Aïd, René.
-
[Multi angle]
An introduction to BSDE
/ Auteur de la Conférence Imkeller, Peter.
-
[Multi angle]
Mean field games with major and minor players
/ Auteur de la Conférence Carmona, René.
Bibliographie
- Le Maitre, O.P., Knio, 0.M., & Moraes, A. (2015). Variance decomposition in stochastic simulators. The Journal of Chemical Physics, 142, 244115 - http://dx.doi.org/10.1063/1.4922922
- Le Maitre, O.P., & Knio, O.M. (2015). PC analysis of stochastic differential equations driven by Wiener noise. Reliability Engineering and System Safety, 135, 107-124 - https://doi.org/10.1016/j.ress.2014.11.002
- Navarro Jimenez, M.,Le Maitre, O.P., & Knio, O.M. (2017). Nonintrusive polynomial chaos expansions for sensitivity analysis in stochastic differential equations. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 378-402 - https://doi.org/10.1137/16M1061989
- Navarro Jimenez, M., Le Maitre, O.P., & Knio, O.M. (2016). Global sensitivity analysis in stochastic simulators of uncertain reaction networks. The Journal of Chemical Physics, 145, 244106 - http://dx.doi.org/10.1063/1.4971797