En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Beyond Bowen specification property - lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Thompson, Daniel J. (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.

Keywords : equilibrium states; geodesic flows; topological pressure

Codes MSC :
37C40 - Smooth ergodic theory, invariant measures
37D25 - Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D35 - Thermodynamic formalism, variational principles, equilibrium states
37D40 - Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2264/Notes/Thompson-1-notes.pdf

Informations sur la Rencontre

Nom de la rencontre : Dynamique au-delà de l'hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity
Organisateurs de la rencontre : Bonatti, Christian ; Buzzi, Jérôme ; Crovisier, Sylvain ; Gan, Shaobo ; Pacifico, Maria José
Dates : 13/05/2019 - 24/05/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1947.html

Données de citation

DOI : 10.24350/CIRM.V.19525503
Citer cette vidéo: Thompson, Daniel J. (2019). Beyond Bowen specification property - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19525503
URI : http://dx.doi.org/10.24350/CIRM.V.19525503

Voir aussi

Bibliographie

  • BALLMANN, Werner. Axial isometries of manifolds of non-positive curvature. Mathematische Annalen, 1982, vol. 259, no 1, p. 131-144. - https://doi.org/10.1007/BF01456836

  • BALLMANN, Werner. Lectures on Spaces of Nonpositive Curvature. Oberwolfach Seminars, vol. 25, 1995. - https://doi.org/10.1007/978-3-0348-9240-7

  • BURNS, Keith, CLIMENHAGA, Vaughn, FISHER, Todd, et al. Unique equilibrium states for geodesic flows in nonpositive curvature. Geometric and Functional Analysis, 2018, vol. 28, no 5, p. 1209-1259. - https://arxiv.org/abs/1703.10878

  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Advances in Mathematics, 2016, vol. 303, p. 745-799. - https://arxiv.org/abs/1505.03803

  • EBERLEIN, Patrick. Geometry of nonpositively curved manifolds. University of Chicago Press, 1996. -

  • EBERLEIN, Patrick. Geodesic flows in manifolds of nonpositive curvature, Smooth ergodictheory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 2001, vol. 69, p. 525-571. - https://doi.org/10.1090/pspum/069

  • GELFERT, Katrin et SCHAPIRA, Barbara. Pressures for geodesic flows of rank one manifolds. Nonlinearity, 2014, vol. 27, no 7, p. 1575. - https://hal.archives-ouvertes.fr/hal-00881421/

  • GERBER, Marlies, WILKINSON, Amie, et al. Hölder regularity of horocycle foliations. J. Differential Geom, 1999, vol. 52, no 1, p. 41-72. - https://doi.org/10.4310/jdg/1214425216

  • KNIEPER, Gerhard. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. 1997. - https://doi.org/10.2307/120995



Sélection Signaler une erreur