En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces

Bookmarks Report an error
Multi angle
Authors : Ohnita, Yoshihiro (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : An $R$-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each $R$-space has the canonical embedding into a Kähler $C$-space as a real form which is a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is an invariant under Hamiltonian isotopies and very fundamental to the study of the Floer homology for intersections of Lagrangian submanifolds. In this talk we provide a Lie theoretic formula for the minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces and discuss several examples of the calculation by the formula.

Keywords : $R$-spaces; Eintein-Kähler $C$-spaces; monotone Lagrangian submanifolds; minimal Maslov number

MSC Codes :
53C25 - Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C55 - Hermitian and Kählerian manifolds (global differential geometry)

Additional resources :
https://www.cirm-math.fr/RepOrga/1936/Slides/ohnita.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/06/2019
    Conference Date : 29/05/2019
    Subseries : Research talks
    arXiv category : Differential Geometry ; Symplectic Geometry
    Mathematical Area(s) : Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:59:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-29_Ohnita.mp4

Information on the Event

Event Title : Problèmes variationnels et géométrie des sous-variétés / Variational Problems and the Geometry of Submanifolds
Event Organizers : Alias, Luis J. ; Loubeau, Eric ; Mazet, Laurent ; Montaldo, Stefano ; Soret, Marc ; Ville, Marina
Dates : 27/05/2019 - 31/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1936.html

Citation Data

DOI : 10.24350/CIRM.V.19533103
Cite this video as: Ohnita, Yoshihiro (2019). Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19533103
URI : http://dx.doi.org/10.24350/CIRM.V.19533103

See Also

Bibliography

  • BOREL, Armand et HIRZEBRUCH, Friedrich. Characteristic classes and homogeneous spaces, I. American Journal of Mathematics, 1958, vol. 80, no 2, p. 458-538. - https://doi.org/10.2307/2372795

  • ONO, Hajime. Integral formula of Maslov index and its applications. Japanese journal of mathematics. New series, 2004, vol. 30, no 2, p. 413-421. - https://doi.org/10.4099/math1924.30.413

  • SATAKE, Ichirô. On representations and compactifications of symmetric Riemannian spaces. Annals of Mathematics, 1960, p. 77-110. - https://doi.org/10.2307/1969880

  • TAKEUCHI, Masaru. Cell decompositions and Morse equalities on certain symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1965, vol. 12, p. 81-192. -

  • TAKEUCHI, Masaru, KOBAYASHI, Shoshichi, et al. Minimal imbeddings of $ R $-spaces. Journal of Differential Geometry, 1968, vol. 2, no 2, p. 203-215. - https://doi.org/10.4310/jdg/1214428257

  • TAKEUCHI, Masaru. Homogeneous Kähler submanifolds in complex projective spaces. Japanese journal of mathematics. New series, 1978, vol. 4, no 1, p. 171-219. - https://doi.org/10.4099/math1924.4.171

  • TAKEUCHI, Masaru. Stability of certain minimal submanifolds of compact Hermitian symmetric spaces. Tohoku Mathematical Journal, Second Series, 1984, vol. 36, no 2, p. 293-314. - https://doi.org/10.2748/tmj/1178228853

  • OHNITA, Yoshihiro. Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces. Preprint submitted to Complex Manifolds. OCAMI Preprint Ser. 18-8. - http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/pdf2018/18_08.pdf

  • OHNITA, YOSHIHIRO. Geometry of Lagrangian submanifolds and isoparametric hypersurfaces. In : Proceedings of The Fourteenth International Workshop on Differential Geometry. 2010. p. 43-67. - http://www.sci.osaka-cu.ac.jp/~ohnita/paper/2010OhnitaProcKNUGRG.pdf

  • MA, Hui, OHNITA, Yoshihiro, et al. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, I. Journal of Differential Geometry, 2014, vol. 97, no 2, p. 275-348. - https://doi.org/10.4310/jdg/1405447807

  • IRIYEH, Hiroshi, MA, Hui, MIYAOKA, Reiko, et al. Hamiltonian non‐displaceability of Gauss images of isoparametric hypersurfaces. Bulletin of the London Mathematical Society, 2016, vol. 48, no 5, p. 802-812. - https://doi.org/10.1112/blms/bdw040



Bookmarks Report an error