Auteurs : Dobrinen, Natasha (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The Galvin-Prikry theorem states that Borel partitions of the Baire space are Ramsey. Thus, given any Borel subset $\chi$ of the Baire space and an infinite set $N$, there is an infinite subset $M$ of $N$ such that $\left [M \right ]^{\omega }$ is either contained in $\chi$ or disjoint from $\chi$ . In their 2005 paper, Kechris, Pestov and Todorcevic point out the dearth of similar results for homogeneous relational structures. We have attained such a result for Borel colorings of copies of the Rado graph. We build a topological space of copies of the Rado graph, forming a subspace of the Baire space. Using techniques developed for our work on the big Ramsey degrees of the Henson graphs, we prove that Borel partitions of this space of Rado graphs are Ramsey.
Keywords : Rado graph; Ramsey theory; forcing
Codes MSC :
03C15
- Denumerable structures
03E75
- Applications
05D10
- Ramsey theory
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2052/Slides/Dobrinen_Luminy_Sept2019.pdf
|
Informations sur la Rencontre
Nom de la rencontre : 15th International Luminy Workshop in Set Theory / XVe Atelier international de théorie des ensembles Organisateurs de la rencontre : Dzamonja, Mirna ; Velickovic, Boban Dates : 23/09/2019 - 27/09/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/2052.html
DOI : 10.24350/CIRM.V.19563603
Citer cette vidéo:
Dobrinen, Natasha (2019). Borel sets of Rado graphs are Ramsey. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19563603
URI : http://dx.doi.org/10.24350/CIRM.V.19563603
|
Voir aussi
Bibliographie
- DOBRINEN, Natasha. Borel sets of Rado graphs and Ramsey's Theorem. arXiv preprint arXiv:1904.00266, 2019. - https://arxiv.org/abs/1904.00266
- DOBRINEN, Natasha. The Ramsey theory of the universal homogeneous triangle-free graph. arXiv preprint arXiv:1704.00220, 2017. - https://arxiv.org/abs/1704.00220
- DOBRINEN, Natasha. The Ramsey Theory of Henson graphs. arXiv preprint arXiv:1901.06660, 2019. - https://arxiv.org/abs/1901.06660
- ELLENTUCK, Erik. A new proof that analytic sets are Ramsey. The Journal of Symbolic Logic, 1974, vol. 39, no 1, p. 163-165. - https://doi.org/10.2307/2272356
- GALVIN, Fred et PRIKRY, Karel. Borel sets and Ramsey's theorem 1. The Journal of Symbolic Logic, 1973, vol. 38, no 2, p. 193-198. - https://doi.org/10.2307/2272055
- HALPERN, James D. et LÄUCHLI, Hans. A partition theorem. Transactions of the American Mathematical society, 1966, vol. 124, no 2, p. 360-367. - https://doi.org/10.1090/s0002-9947-1966-0200172-2
- LAFLAMME*, Claude, SAUER, Norbert W., et VUKSANOVIC, Vojkan. Canonical partitions of universal structures. Combinatorica, 2006, vol. 26, no 2, p. 183-205. - https://doi.org/10.1007/s00493-006-0013-2
- KECHRIS, Alexander S., PESTOV, Vladimir G., et TODORCEVIC, Stevo. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric and Functional Analysis, 2005, vol. 15, no 1, p. 106-189. - https://doi.org/10.1007/s00039-005-0503-1
- MILLIKEN, Keith R. A Ramsey theorem for trees. Journal of Combinatorial Theory, Series A, 1979, vol. 26, no 3, p. 215-237. - https://doi.org/10.1016/0097-3165(79)90101-8