En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Absence of eigenvalues of Schrödinger, Dirac and Pauli Hamiltonians via the method of multipliers

Sélection Signaler une erreur
Virtualconference
Auteurs : Cossetti, Lucrezia (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Originally arisen to understand characterizing properties connected with dispersive phenomena, in the last decades the method of multipliers has been recognized as a useful tool in Spectral Theory, in particular in connection with proof of absence of point spectrum for both self-adjoint and non self-adjoint operators. In this seminar we will see the developments of the method reviewing some recent results concerning self-adjoint and non self-adjoint Schrödinger operators in different settings, specifically both when the configuration space is the whole Euclidean space \R^d and when we restrict to domains with boundaries. We will show how this technique allows to detect physically natural repulsive and smallness conditions on the potentials which guarantee total absence of eigenvalues. Some very recent results concerning Pauli and Dirac operators will be also presented.
The talk is based on joint works with L. Fanelli and D. Krejcirik.

Keywords : absence of eigenvalues; non-self-adjoint hamiltonians; method of multipliers

Codes MSC :
35Pxx - Spectral theory and eigenvalue problems for partial differential operators
35Q40 - PDEs in connection with quantum mechanics
35Qxx - Equations of mathematical physics and other areas of application

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 26/02/2021
    Date de captation : 01/02/2021
    Sous collection : Research talks
    arXiv category : Spectral Theory ; Mathematical Physics ; Analysis of PDEs
    Domaine : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Durée : 00:31:06
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-02-01_Cossetti.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematical Aspects of Physics with Non-Self-Adjoint Operators: 10 Years After / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints: 10 ans après
Organisateurs de la rencontre : Boulton, Lyonell ; Krejcirik, David ; Siegl, Petr
Dates : 01/02/2021 - 05/02/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2153.html

Données de citation

DOI : 10.24350/CIRM.V.19711303
Citer cette vidéo: Cossetti, Lucrezia (2021). Absence of eigenvalues of Schrödinger, Dirac and Pauli Hamiltonians via the method of multipliers. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19711303
URI : http://dx.doi.org/10.24350/CIRM.V.19711303

Voir aussi

Bibliographie

  • COSSETTI, Lucrezia, FANELLI, Luca, et KREJČIŘÍK, David. Absence of eigenvalues of Dirac and Pauli Hamiltonians via the method of multipliers. Communications in Mathematical Physics, 2020, vol. 379, no 2, p. 633-691. - https://doi.org/10.1007/s00220-020-03853-7

  • COSSETTI, Lucrezia et KREJČIŘÍK, David. Absence of eigenvalues of non‐self‐adjoint Robin Laplacians on the half‐space. Proceedings of the London Mathematical Society, 2020, vol. 121, no 3, p. 584-616. - https://doi.org/10.1112/plms.12327

  • FANELLI, Luca, KREJČIŘÍK, David, et VEGA, Luis. Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. Journal of Functional Analysis, 2018, vol. 275, no 9, p. 2453-2472. - https://doi.org/10.1016/j.jfa.2018.08.007

  • FANELLI, Luca, KREJČIŘÍK, David, VEGA Luis. Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory, 2018, vol.8 , p.575-604. - http://dx.doi.org/10.4171/JST/208



Sélection Signaler une erreur