En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Absence of eigenvalues of Schrödinger, Dirac and Pauli Hamiltonians via the method of multipliers

    Sélection Signaler une erreur
    Virtualconference
    Auteurs : Cossetti, Lucrezia (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Originally arisen to understand characterizing properties connected with dispersive phenomena, in the last decades the method of multipliers has been recognized as a useful tool in Spectral Theory, in particular in connection with proof of absence of point spectrum for both self-adjoint and non self-adjoint operators. In this seminar we will see the developments of the method reviewing some recent results concerning self-adjoint and non self-adjoint Schrödinger operators in different settings, specifically both when the configuration space is the whole Euclidean space \R^d and when we restrict to domains with boundaries. We will show how this technique allows to detect physically natural repulsive and smallness conditions on the potentials which guarantee total absence of eigenvalues. Some very recent results concerning Pauli and Dirac operators will be also presented.
    The talk is based on joint works with L. Fanelli and D. Krejcirik.

    Keywords : absence of eigenvalues; non-self-adjoint hamiltonians; method of multipliers

    Codes MSC :
    35Pxx - Spectral theory and eigenvalue problems for partial differential operators
    35Q40 - PDEs in connection with quantum mechanics
    35Qxx - Equations of mathematical physics and other areas of application

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 26/02/2021
      Date de captation : 01/02/2021
      Sous collection : Research talks
      arXiv category : Spectral Theory ; Mathematical Physics ; Analysis of PDEs
      Domaine : PDE ; Mathematical Physics
      Format : MP4 (.mp4) - HD
      Durée : 00:31:06
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2021-02-01_Cossetti.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Mathematical Aspects of Physics with Non-Self-Adjoint Operators: 10 Years After / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints: 10 ans après
    Organisateurs de la rencontre : Boulton, Lyonell ; Krejcirik, David ; Siegl, Petr
    Dates : 01/02/2021 - 05/02/2021
    Année de la rencontre : 2021
    URL Congrès : https://conferences.cirm-math.fr/2153.html

    Données de citation

    DOI : 10.24350/CIRM.V.19711303
    Citer cette vidéo: Cossetti, Lucrezia (2021). Absence of eigenvalues of Schrödinger, Dirac and Pauli Hamiltonians via the method of multipliers. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19711303
    URI : http://dx.doi.org/10.24350/CIRM.V.19711303

    Voir aussi

    Bibliographie

    • COSSETTI, Lucrezia, FANELLI, Luca, et KREJČIŘÍK, David. Absence of eigenvalues of Dirac and Pauli Hamiltonians via the method of multipliers. Communications in Mathematical Physics, 2020, vol. 379, no 2, p. 633-691. - https://doi.org/10.1007/s00220-020-03853-7

    • COSSETTI, Lucrezia et KREJČIŘÍK, David. Absence of eigenvalues of non‐self‐adjoint Robin Laplacians on the half‐space. Proceedings of the London Mathematical Society, 2020, vol. 121, no 3, p. 584-616. - https://doi.org/10.1112/plms.12327

    • FANELLI, Luca, KREJČIŘÍK, David, et VEGA, Luis. Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. Journal of Functional Analysis, 2018, vol. 275, no 9, p. 2453-2472. - https://doi.org/10.1016/j.jfa.2018.08.007

    • FANELLI, Luca, KREJČIŘÍK, David, VEGA Luis. Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory, 2018, vol.8 , p.575-604. - http://dx.doi.org/10.4171/JST/208



    Sélection Signaler une erreur
    Close