En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Highly-oscillatory evolution equations: averaging and numerics

Sélection Signaler une erreur
Virtualconference
Auteurs : Lemou, Mohammed (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to capture low frequencies and transition regimes. We present (very briefly) two strategies allowing to remove this obstacle for a large class of evolution problems : a 2-scale method and a micro/macro method. Two different frameworks will be considered : constant frequency, and variable - possibly vanishing - frequency. The result of these approaches is the construction of numerical schemes whose order of accuracy no longer depends on the frequency of oscillation, one then speaks of uniform accuracy (UA) for these schemes. Finally, a new technique for systematizing these two methods will be presented. Its purpose is to reduce the number of inputs that the user must provide to apply the method in practice. In other words, only the values of the field defining the evolution equation (and not its derivatives) are used.These methods have been successfully applied to solve a number of evolution models: non-linear Schrödinger and Klein-Gordon equations, Vlasov-Poisson kinetic equation with strong magnetic field, quantum transport in graphene.

Keywords : multi-scale numerical methods; highly oscillatory equations; averaging; varying frequency

Codes MSC :
35Q55 - NLS-like equations (nonlinear Schrödinger)
37L05 - General theory, nonlinear semigroups, evolution equations
65L05 - Initial value problems for ODE (numerical method)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Mohammed_LEMOU.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 09/04/2021
    Date de captation : 22/03/2021
    Sous collection : Research talks
    arXiv category : Numerical Analysis
    Domaine : Numerical Analysis & Scientific Computing ; Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Durée : 00:44:21
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-22_Lemou.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Organisateurs de la rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Année de la rencontre : 2021
URL Congrès : https://www.chairejeanmorlet.com/2355.html

Données de citation

DOI : 10.24350/CIRM.V.19735003
Citer cette vidéo: Lemou, Mohammed (2021). Highly-oscillatory evolution equations: averaging and numerics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19735003
URI : http://dx.doi.org/10.24350/CIRM.V.19735003

Voir aussi

Bibliographie

  • CHARTIER, Philippe, LEMOU, Mohammed, MÉHATS, Florian, et al. A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Foundations of Computational Mathematics, 2020, vol. 20, no 1, p. 1-33. - https://doi.org/10.1007/s10208-019-09413-3

  • CHARTIER, Ph, LEMOU, Mohammed, MÉHATS, Florian, et al. Highly oscillatory problems with time-dependent vanishing frequency. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 2, p. 925-944. - https://doi.org/10.1137/18M1203456

  • CROUSEILLES, Nicolas, JIN, Shi, LEMOU, Mohammed, et al. A micro-macro method for a kinetic graphene model in one space dimension. Multiscale Modeling & Simulation, 2020, vol. 18, no 1, p. 444-474. - https://doi.org/10.1137/18M1173770

  • CHARTIER, Philippe, LEMOU, Mohammed, MÉHATS, Florian, et al. Derivative-free high-order uniformly accurate schemes for highly-oscillatory systems. To appear 2021. - https://hal.inria.fr/hal-03141156



Sélection Signaler une erreur