En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Invariant integrated convexity profiles for Hamilton-Jacobi-Bellman equations and applications

Sélection Signaler une erreur
Multi angle
Auteurs : Conforti, Giovanni (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : It has been known for a long time that Hamilton-Jacobi-Bellman (HJB) equations preserve convexity, namely if the terminal condition is convex, the solution stays convex at all times. Equivalently, log-concavity is preserved along the heat equation, namely if one starts with a log-concave density, then the solution stays log-concave at all times. Both these facts are a direct consequence of Prékopa-Leindler inequality. In this talk, I will illustrate how a careful second-order analysis on coupling by reflection on the characteristics of the HJB equation reveals the existence of weaker notions of convexity that propagate backward along HJB. More precisely, by introducing the notion of integrated convexity profile, we are able to construct families of functions that fail to be convex, but are still invariant under the action of the HJB equation. In the second part of the talk I will illustrate some applications of these invariance results to the exponential convergence of learning algorithms for entropic optimal transport.

Keywords : convexity; coupling by reflection HJB characteristics

Codes MSC :
49Q22 - Optimal transportation
49L12 - Hamilton-Jacobi equations in optimal control and differential games

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 14/02/2024
    Date de captation : 23/01/2024
    Sous collection : Research talks
    arXiv category : Probability
    Domaine : PDE ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:54:01
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-01-23_Conforti.mp4

Informations sur la Rencontre

Nom de la rencontre : PDE & Probability in interaction: functional inequalities, optimal transport and particle systems / Interactions EDP/Probabilité: inégalités fonctionnelles, transport optimal et systèmes de particules
Organisateurs de la rencontre : Monmarché, Pierre ; Reygner, Julien ; Schlichting, André ; Simon, Marielle
Dates : 22/01/2024 - 26/01/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2988.html

Données de citation

DOI : 10.24350/CIRM.V.20129103
Citer cette vidéo: Conforti, Giovanni (2024). Invariant integrated convexity profiles for Hamilton-Jacobi-Bellman equations and applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20129103
URI : http://dx.doi.org/10.24350/CIRM.V.20129103

Voir aussi

Bibliographie

  • CONFORTI, Giovanni. Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges. arXiv preprint arXiv:2301.00083, 2022. - https://doi.org/10.48550/arXiv.2301.00083



Imagette Video

Sélection Signaler une erreur