Auteurs : Bortz, Simon (Coordinateur) ;
Migliaccio, Alessandra (Auteur de la Conférence) ;
Lauterbach, Sven (Auteur de la Conférence) ;
van Dijk, Dann (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The $T(1)$ theorem of David and Journé is one of the most remarkable theorems in harmonic analysis. The theorem reduces the study of $L^{p}$ boundedness of a singular integral operator, $T$ to testing a 'testing condition', that is, verifying $T(1)$ is in the space $B M O$. A simplistic view of these theorems is that they shift the task of verifying boundedness for all functions (globally) to that of verifying a condition on all cubes. More general testing conditions, e.g. 'local $T(b)$' conditions, allow one to adapt the testing function to the cube and/or weaken conditions on the operator. These 'local $T(b)$ theorems' are an important ingredient to the initial solution to the Kato problem.
The project will introduce the concepts of $T(1) / T(b)$ theory for singular integrals, Littlewood-Paley theory, Carleson measures and stopping time arguments. The goal is to present the 'original' proof of the Kato problem and, possibly, look at more recent developments.
Keywords : T1 theorems; elliptic PDE
Codes MSC :
35J25
- Boundary value problems for second-order elliptic equations
43A15
- $L^p$-spaces and other function spaces on groups, semigroups, etc.
42B37
- Harmonic analysis and PDE
|
Informations sur la Rencontre
Nom de la rencontre : Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques Organisateurs de la rencontre : Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick Dates : 17/06/2024 - 21/06/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2972.html
DOI : 10.24350/CIRM.V.20190803
Citer cette vidéo:
Bortz, Simon ;Migliaccio, Alessandra ;Lauterbach, Sven ;van Dijk, Dann (2024). Project violet: T(1) and T(b) theorems and applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20190803
URI : http://dx.doi.org/10.24350/CIRM.V.20190803
|
Voir aussi
-
[Multi angle]
Project purple: $L^{p}$-extrapolation à la Blunck-Kunstmann
/ Coordinateur Vogt, Hendrik ; Auteur de la Conférence Heidrich, Erik ; Auteur de la Conférence Söder, Charlotte ; Auteur de la Conférence Qi, Siguang ; Auteur de la Conférence Lenz, Jonas.
-
[Multi angle]
Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces
/ Coordinateur Lorist, Emiel ; Auteur de la Conférence Stojanow, Johannes ; Auteur de la Conférence Sharma, Himani ; Auteur de la Conférence Pritchard, Andrew.
-
[Multi angle]
Project red: $\mathscr{R}$-sectorial Operators and Maximal Regularity
/ Coordinateur Klioba, Katharina ; Coordinateur Seifert, Christian ; Coordinateur Trostorff, Sascha ; Auteur de la Conférence Carvalho, Francisco ; Auteur de la Conférence Ruff, Maximilian.
-
[Multi angle]
Project orange: Parabolic maximal regularity and the Kato square root property
/ Coordinateur Arendt, Wolfgang ; Coordinateur Schlierf, Manuel ; Auteur de la Conférence Abahmami, Sofian ; Auteur de la Conférence Heister, Henning ; Auteur de la Conférence Jahandideh, Azam ; Auteur de la Conférence Leone, Vinzenzo.
Bibliographie
- T1 and Tb Theorems and applications, In Harmonic analysis and applications, 155–197. IAS/Park City Math. Ser., 27 -