Auteurs : Vogt, Hendrik (Coordinateur) ;
Heidrich, Erik (Auteur de la Conférence) ;
Söder, Charlotte (Auteur de la Conférence) ;
Qi, Siguang (Auteur de la Conférence) ;
Lenz, Jonas (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The aim of this project is a deeper investigation of off-diagonal estimates. In the ISem lectures, in Theorem 11.16, it has already been shown that off-diagonal estimates in combination with Sobolev embeddings lead to $L^{p}$-extrapolation for the resolvents of an elliptic operator $L$ in divergence form on $\mathbb{R}^{n}$. More precisely, if $\left|\frac{1}{p}-\frac{1}{2}\right|<\frac{1}{n}$, then there exists $C>0$ such that $\left\|(1+t L)^{-1} u\right\|_{p} \leqslant C\|u\|_{p}$ for all $t>0, u \in L^{p} \cap L^{2}\left(\mathbb{R}^{n}\right)$.
A related (more difficult!) question is for what range of $p \in(1, \infty)$ the norm equivalence $\|\sqrt{L} u\|_{2} \simeq\|\nabla u\|_{2}$ from Theorem 12.1 (the Kato square root property for $L$ !) extrapolates to $L^{p}\left(\mathbb{R}^{n}\right)$. It turns out that there are different ranges of $p$ for the two estimates $\|\sqrt{L} u\|_{p} \lesssim\|\nabla u\|_{p}$ and $\|\nabla u\|_{p} \lesssim\|\sqrt{L} u\|_{p}$. The latter estimate is generally known as $L^{p}$-boundedness of the Riesz transform, and this is what shall be the core of the project.
Starting point of the project is the AMS memoir [1], which starts with an excellent introduction into the topic; you can find a preprint version of the memoir on the arXiv (with different numbering of theorems than in the published version, unfortunately). An important abstract $L^{p}$-extrapolation result is Theorem 1.1 in [1], the application Riesz transforms on $L^{p}$ can be found in Section 4.1. This approach is due to Blunck and Kunstmann [2, 3]. If time permits, we can also study the approach of Shen [4] to Riesz transforms. The precise selection of topics will be decided among the participants of the project.
Codes MSC :
35-02
- Research exposition (monographs, survey articles)
42-02
- Research exposition (monographs, survey articles)
|
Informations sur la Rencontre
Nom de la rencontre : Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques Organisateurs de la rencontre : Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick Dates : 17/06/2024 - 21/06/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2972.html
DOI : 10.24350/CIRM.V.20191303
Citer cette vidéo:
Vogt, Hendrik ;Heidrich, Erik ;Söder, Charlotte ;Qi, Siguang ;Lenz, Jonas (2024). Project purple: $L^{p}$-extrapolation à la Blunck-Kunstmann. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20191303
URI : http://dx.doi.org/10.24350/CIRM.V.20191303
|
Voir aussi
-
[Multi angle]
Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces
/ Coordinateur Lorist, Emiel ; Auteur de la Conférence Stojanow, Johannes ; Auteur de la Conférence Sharma, Himani ; Auteur de la Conférence Pritchard, Andrew.
-
[Multi angle]
Project red: $\mathscr{R}$-sectorial Operators and Maximal Regularity
/ Coordinateur Klioba, Katharina ; Coordinateur Seifert, Christian ; Coordinateur Trostorff, Sascha ; Auteur de la Conférence Carvalho, Francisco ; Auteur de la Conférence Ruff, Maximilian.
-
[Multi angle]
Project violet: T(1) and T(b) theorems and applications
/ Coordinateur Bortz, Simon ; Auteur de la Conférence Migliaccio, Alessandra ; Auteur de la Conférence Lauterbach, Sven ; Auteur de la Conférence van Dijk, Dann.
-
[Multi angle]
Project orange: Parabolic maximal regularity and the Kato square root property
/ Coordinateur Arendt, Wolfgang ; Coordinateur Schlierf, Manuel ; Auteur de la Conférence Abahmami, Sofian ; Auteur de la Conférence Heister, Henning ; Auteur de la Conférence Jahandideh, Azam ; Auteur de la Conférence Leone, Vinzenzo.
Bibliographie
- AUSCHER, Pascal. On necessary and sufficient conditions for $ L^ p $-estimates of Riesz transforms associated to elliptic operators on $\mathbb {R}^ n $ and related estimates. American Mathematical Soc., 2007. - http://arXiv.org/abs/math/0506032v2
- BLUNCK, Sönke et KUNSTMANN, Peer Christian. Calderón-Zygmund theory for non-integral operators and the H^∞ functional calculus. 2003. - https://ems.press/content/serial-article-files/38074
- BLUNCK, Sönke et KUNSTMANN, P. C. Weak type (p, p) estimates for Riesz transforms. Mathematische Zeitschrift, 2004, vol. 247, p. 137-148. - http://dx.doi.org/10.1007/s00209-003-0627-7
- SHEN, Zhongwei. Bounds of Riesz transforms on $ L^ p $ spaces for second order elliptic operators. In : Annales de l'institut Fourier. 2005. p. 173-197. - https://doi.org/10.5802/aif.2094