En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus

Sélection Signaler une erreur
Multi angle
Auteurs : Chalendar, Isabelle (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $\mathrm{X}$ be a topological space of holomorphic functions on the open unit disc $D$. The study of the geometry of a space $X$ is centered on the identification of the linear isometries on $\mathrm{X}$, and there is an obvious connection between weighted composition operators and isometries. This connection can be traced back to Banach himself and emphasized by Forelli, El-Gebeily, Wolfe, Kolaski, Cima, Wogen, Colonna and many others. A characterisation is given of all the linear isometries of Hol($\Omega$), the Fr´ echet space of all holomorphic functions on $\Omega$ when $\Omega$ is the unit disc or an annulus, endowed with one of the standard metrics. Further, the larger class of operators isometric when restricted to one of the defining seminorms is identified. This is a joint work with Lucas Oger and Jonathan Partington.

Keywords : Fréchet space; holomorphic functions; isometry; annulus; weighted composition operator; spectrum

Codes MSC :
30H05 - Spaces and algebras of analytic functions, See also {32E25, 46Exx, 46J15}
47A10 - Spectrum and resolvent of linear operators
47B33 - Composition operators

    Informations sur la Vidéo

    Réalisateur : Récanzone, Luca
    Langue : Anglais
    Date de publication : 14/12/2024
    Date de captation : 03/12/2024
    Sous collection : Research talks
    arXiv category : Functional Analysis ; Complex Variables
    Domaine : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:37:43
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-03_Chalendar.mp4

Informations sur la Rencontre

Nom de la rencontre : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques
Organisateurs de la rencontre : Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Dates : 02/12/2024 - 06/12/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3085.html

Données de citation

DOI : 10.24350/CIRM.V.20273303
Citer cette vidéo: Chalendar, Isabelle (2024). Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20273303
URI : http://dx.doi.org/10.24350/CIRM.V.20273303

Voir aussi

Bibliographie

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries on the annulus: description and spectral properties. arXiv preprint arXiv:2409.16105, 2024. - https://doi.org/10.48550/arXiv.2409.16105

  • ARENDT, Wolfgang, BERNARD, Eddy, CELARIES, Benjamin, et al. Spectral properties of weighted composition operators on Hol(\mathbb{D}) induced by rotations, Indiana Univ. Math. J. 72 (2023), 1789-1820 - https://doi.org/10.1512/iumj.2023.72.9511

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries of Hol (D). Journal of Mathematical Analysis and Applications, 2024, p. 128619. - https://doi.org/10.1016/j.jmaa.2024.128619

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R., Linear and isometries on the annulus: description and spectral properties, submitted -

  • EL-GEBEILY, Mohamad et WOLFE, John. Isometries of the disc algebra. Proceedings of the American Mathematical Society, 1985, vol. 93, no 4, p. 697-702. - https://doi.org/10.1090/S0002-9939-1985-0776205-9

  • FORELLI, Frank. The isometries of Hp. Canadian Journal of Mathematics, 1964, vol. 16, p. 721-728. - https://doi.org/10.4153/CJM-1964-068-3



Imagette Video

Sélection Signaler une erreur