En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Frieze patterns and representation theory

Sélection Signaler une erreur
Multi angle
Auteurs : Serhiyenko, Khrystyna (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The goal of this talk is to explore the connections between various frieze patterns and representation theory of associative algebras. We begin with the classical Conway- Coxeter friezes over positive integers and their correspondence with Jacobian algebras of type A, where entries in the frieze count the number of submodules of indecompos- able representations. This can also be reinterpreted in terms of applying the Caldero- Chapoton map, providing a close connection to Fomin-Zelevinsky's cluster algebras. Extending these ideas beyond the classical case, we will also discuss higher dimen- sional friezes, called (tame) SLk friezes, as well as their relation to cluster algebras on coordinate rings of Grassmannians Gr(k,n) and their categorification. Furthermore, SLk friezes are a special type of SLk tilings, integer tilings of the plane satisfying the condition that every k x k square has determinant 1. We will present a characterization of SLk tilings in terms of pairs of bi-infinite sequences in Zk and discuss applications to duality and positivity.

Keywords : frieze; SL_k tiling; quiver representation; cluster algebra; grassmannian

Codes MSC :
05E10 - Combinatorial aspects of representation theory
14M15 - Grassmannians, Schubert varieties, flag manifolds
16G20 - Representations of quivers and partially ordered sets
13F60 - Cluster algebras

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 04/06/2025
    Date de captation : 12/05/2025
    Sous collection : Research School
    arXiv category : Representation Theory ; Rings and Algebras ; Combinatorics
    Domaine : Algebra ; Combinatorics
    Format : MP4 (.mp4) - HD
    Durée : 01:09:09
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-05-12_Serhiyenko.mp4

Informations sur la Rencontre

Nom de la rencontre : Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie
Organisateurs de la rencontre : Baur, Karin ; Cuntz, Michael ; Faber, Eleonore ; Plamondon, Pierre-Guy
Dates : 12/05/2025 - 16/05/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3214.html

Données de citation

DOI : 10.24350/CIRM.V.20346503
Citer cette vidéo: Serhiyenko, Khrystyna (2025). Frieze patterns and representation theory . CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20346503
URI : http://dx.doi.org/10.24350/CIRM.V.20346503

Voir aussi

Bibliographie

  • ZACHERY Peterson et SERHIYENKO Khrystyna, SLk -tilings and paths in Zk , preprint arXiv: 2504.01693, 2025, 30 pp. - https://doi.org/10.48550/arXiv.2504.01693

  • BAUR, Karin, FABER, Eleonore, GRATZ, Sira, et al. Friezes satisfying higher SLk-determinants. Algebra & Number Theory, 2021, vol. 15, no 1, p. 29-68. - https://doi.org/10.2140/ant.2021.15.29

  • CALDERO, Philippe et CHAPOTON, Frédéric. Cluster algebras as Hall algebras of quiver representations. Commentarii Mathematici Helvetici, 2006, vol. 81, no 3, p. 595-616. - https://doi.org./10.4171/cmh/65



Imagette Video

Sélection Signaler une erreur