En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$L^2$ Hypocoercivity

Bookmarks Report an error
Multi angle
Authors : Dolbeault, Jean (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The purpose of the $L^2$ hypocoercivity method is to obtain rates for solutions of linear kinetic equations without regularizing effects, in asymptotic regimes. Initially intended for systems with confinement in position space and simple local equilibria, the method has been extended to various local equilibria in velocities and non-compact situations in positions. It is also flexible enough to include non-local transport terms associated with Poisson coupling. The lecture will be devoted to a review of some recent results.

Keywords : hypocoercivity; kinetic equations; convergence rates; Decay rates; entropy methods

MSC Codes :
82C40 - Kinetic theory of gases

Additional resources :
https://www.cirm-math.fr/RepOrga/2083/Slides/CIRM-16-10-2019.pdf

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 04/11/2019
    Conference Date : 16/10/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Mathematical Physics
    Mathematical Area(s) : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:43
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-10-16_Dolbeault.mp4

Information on the Event

Event Title : PDE/Probability Interactions: Particle Systems, Hyperbolic Conservation Laws / Interactions EDP/Probabilités : systèmes de particules, lois de conservation hyperboliques
Event Organizers : Caputo, Pietro ; Fathi, Max ; Guillin, Arnaud ; Reygner, Julien
Dates : 14/10/2019 - 18/10/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2083.html

Citation Data

DOI : 10.24350/CIRM.V.19570103
Cite this video as: Dolbeault, Jean (2019). $L^2$ Hypocoercivity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19570103
URI : http://dx.doi.org/10.24350/CIRM.V.19570103

See Also

Bibliography

  • MOUHOT, Clément et NEUMANN, Lukas. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity, 2006, vol. 19, no 4, p. 969. - https://arxiv.org/abs/math/0607530

  • HÉRAU, Frédéric. Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptotic Analysis, 2006, vol. 46, no 3, 4, p. 349-359. - https://arxiv.org/abs/math/0503351

  • DOLBEAULT, Jean, MARKOWICH, Peter, OELZ, Dietmar, et al. Non linear diffusions as limit of kinetic equations with relaxation collision kernels. Archive for Rational Mechanics and Analysis, 2007, vol. 186, no 1, p. 133-158. - https://doi.org/10.1007/s00205-007-0049-5

  • DOLBEAULT, Jean, MOUHOT, Clément, et SCHMEISER, Christian. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Mathematique, 2009, vol. 347, no 9-10, p. 511-516. - https://arxiv.org/abs/0810.3493

  • DOLBEAULT, Jean, MOUHOT, Clément, et SCHMEISER, Christian. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society, 2015, vol. 367, no 6, p. 3807-3828. - https://doi.org/10.1090/S0002-9947-2015-06012-7

  • BOUIN, Emeric, DOLBEAULT, Jean, MISCHLER, Stéphane, et al. Hypocoercivity without confinement. arXiv preprint arXiv:1708.06180, 2017. - https://arxiv.org/abs/1708.06180

  • BOUIN, Emeric, DOLBEAULT, Jean, et SCHMEISER, Christian. Diffusion with very weak confinement. arXiv preprint arXiv:1901.08323, 2019. - https://arxiv.org/abs/1901.08323

  • GUALDANI, Maria Pia, MISCHLER, Stéphane, et MOUHOT, Clément. Factorization of non-symmetric operators and exponential H-theorem. Société Mathématique de France, 2017. -

  • BOUIN, Emeric, DOLBEAULT, Jean, et SCHMEISER, Christian. A variational proof of Nash's inequality. arXiv preprint arXiv:1811.12770, 2018. - https://arxiv.org/abs/1811.12770



Bookmarks Report an error