Auteurs : Cardinali, Ilaria (Auteur de la conférence)
CIRM (Editeur )
Résumé :
Let $V$ be an $(n+1)$-dimensional vector space over an arbitrary field $\mathbb{K}$ and denote by $\mathrm{PG}(V)$ the corresponding projective space. Define $\Gamma$ as the point-hyperplane geometry of $\mathrm{PG}(V)$, whose points are the pairs $(p, H)$, where $p$ is a point, $H$ is a hyperplane of $\mathrm{PG}(V)$ and $p \in H$ and whose lines are the sets $\ell_{p, *}:=\{(p, U): p \in U\}$ or $\ell_{*, H}=\{(x, H): x \in H\}$. The geometry $\Gamma$ is also known as the long root geometry for the special linear group $\mathrm{SL}(n+1, \mathbb{K})$ and admits an embedding (the Segre embedding of $\Gamma$ ) in the projective space $\mathrm{PG}\left(M_0\right)$, where $M_0$ is the vector space of the traceless square matrices of order $n+1$ with entries in the field $\mathbb{K}$. Since $M_0$ is isomorphic to a hyperplane of the vector space $V \otimes V^*$, we explicitly have
$$
\varepsilon: \Gamma \rightarrow \mathrm{PG}\left(M_0\right), \quad \varepsilon((\langle x\rangle,\langle\xi\rangle))=\langle x \otimes \xi\rangle,
$$
with $x \in V \backslash\{0\}, \xi \in V^* \backslash\{0\}$. The image $\Lambda_1:=\varepsilon(\Gamma)$ of $\varepsilon$ is represented by the pure tensors $x \otimes \xi$ with $x \in V$ and $\xi \in V^*$ such that $\xi(x)=0$.
If the underlying field $\mathbb{K}$ admits non-trivial automorphisms, for $1 \neq \sigma \in \operatorname{Aut}(\mathrm{K})$, then it is possible to define a 'twisted version' $\varepsilon_\sigma$ of $\varepsilon$ as follows
$$
\varepsilon_\sigma: \Gamma \rightarrow \mathrm{PG}\left(V \otimes V^*\right), \varepsilon_\sigma((\langle x\rangle,\langle\xi\rangle))=\left\langle x^\sigma \otimes \xi\right\rangle,
$$
where $x^\sigma:=\left(x_i{ }^\sigma\right)_{i=1}^{n+1}$.
Consequently, the points of $\Lambda_\sigma:=\varepsilon_\sigma(\Gamma)$ are represented by pure tensors of the form $x^\sigma \otimes \xi$, under the condition $\xi(x)=0$.
In the first part of the talk I will address the problem of the universality of the Segre embedding $\varepsilon$ for $\Gamma$ proving that the answer to this question depends on the underlying field $\mathbb{K}$ and generalizing a previous result for $n=2$ (see recent work of I. Cardinali, L. Giuzzi, A. Pasini).
In the second part of the talk, I shall focus on the case where $\mathbb{K}=\mathbb{F}_q$ is a finite field of order $q$. Thus, regarding $\Lambda_1$ and $\Lambda_\sigma$ as projective systems of $\mathrm{PG}\left(M_0\right)$ respectively $\mathrm{PG}\left(V \otimes V^*\right)$, I will consider the linear codes $\mathcal{C}\left(\Lambda_1\right)$ and $\mathcal{C}\left(\Lambda_\sigma\right)$ arising from them. I shall determine the parameters of $\mathcal{C}(\Lambda)$ and $\mathcal{C}\left(\Lambda_\sigma\right)$ as well as their weight list. I will also give a (geometrical) characterization of some of the words of these codes having minimum or maximal weight (see recent work of I. Cardinali, L. Giuzzi).
Mots-Clés : long root geometry; relatively universal embedding; adjoint module; projective codes; Segre code
Codes MSC :
05B25
- Finite geometries, See also {51D20, 51Exx}
51A45
- Incidence structures imbeddable into projective geometries
51B25
- Lie geometries
94B27
- Geometric methods (including applications of algebraic geometry), See also {11T71}
|
Informations sur la Rencontre
Nom de la Rencontre : AGCT 2025 - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT 2025 - Arithmétique, Géométrie, Cryptographie et Théorie des Codes Organisateurs de la Rencontre : Aubry, Yves ; Pazuki, Fabien ; Salgado, Cecilia Dates : 09/06/2025 - 13/06/2025
Année de la rencontre : 2025
URL de la Rencontre : https://conferences.cirm-math.fr/3343.html
DOI : 10.24350/CIRM.V.20363003
Citer cette vidéo:
Cardinali, Ilaria (2025). The point-hyperplane geometry: relatively universal embeddings and associated codes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20363003
URI : http://dx.doi.org/10.24350/CIRM.V.20363003
|
Voir Aussi
Bibliographie
- BEELEN, Peter, GHORPADE, Sudhir R., et HASAN, Sartaj Ul. Linear codes associated to determinantal varieties. Discrete Mathematics, 2015, vol. 338, no 8, p. 1493-1500. - https://doi.org/10.1016/j.disc.2015.03.009
- CARDINALI, Ilaria et GIUZZI, Luca. Minimum distance of symplectic Grassmann codes. Linear Algebra and its Applications, 2016, vol. 488, p. 124-134. - https://doi.org/10.1016/j.laa.2015.09.031
- CARDINALI, Ilaria et GIUZZI, Luca. Line Hermitian Grassmann codes and their parameters. Finite Fields and Their Applications, 2018, vol. 51, p. 407-432. - https://doi.org/10.1016/j.ffa.2018.02.006
- CARDINALI, Ilaria et GIUZZI, Luca. Minimum distance of orthogonal line-Grassmann codes in even characteristic. Journal of Pure and Applied Algebra, 2018, vol. 222, no 10, p. 2975-2988. - https://doi.org/10.1016/j.jpaa.2017.11.009
- CARDINALI, Ilaria, GIUZZI, Luca, KAIPA, Krishna V., et al. Line polar Grassmann codes of orthogonal type. Journal of Pure and Applied Algebra, 2016, vol. 220, no 5, p. 1924-1934. - https://doi.org/10.1016/j.jpaa.2015.10.007
- DE SCHEPPER, Anneleen, SCHILLEWAERT, Jeroen, et VAN MALDEGHEM, Hendrik. On the generating rank and embedding rank of the hexagonic Lie incidence geometries. Combinatorica, 2024, vol. 44, no 2, p. 355-392. - https://doi.org/10.1007/s00493-023-00075-y
- GHORPADE, Sudhir R. et KAIPA, Krishna V. Automorphism groups of Grassmann codes. Finite fields and their applications, 2013, vol. 23, p. 80-102. - https://doi.org/10.1016/j.ffa.2013.04.005
- GHORPADE, Sudhir R. et LACHAUD, Gilles. Hyperplane sections of Grassmannians and the number of MDS linear codes. Finite Fields and Their Applications, 2001, vol. 7, no 4, p. 468-506. - https://doi.org/10.1006/ffta.2000.0299
- GHORPADE, Sudhir R. et TSFASMAN, Michael A. Schubert varieties, linear codes and enumerative combinatorics. Finite fields and their applications, 2005, vol. 11, no 4, p. 684-699. - https://doi.org/10.1016/j.ffa.2004.09.002
- PASINI, Antonio. Geometric hyperplanes of the Lie geometry A n,{1, n}(F). Ricerche di Matematica, 2024, p. 1-20. - https://doi.org/10.1007/s11587-024-00859-4
- TSFASMAN, Michael A., VLĂDUȚ, Serge G., et NOGIN, Dmitry. Algebraic Geometric Codes: Basic Notions: Basic Notions. American Mathematical Soc., 2007. - https://doi.org/10.1090/surv/139
- VAN MALDEGHEM, Hendrik. Hyperplanes of Segre Geometries. Ars Combinatoria, 2024, vol. 160, p. 59-71. - https://doi.org/10.61091/ars-160-07
- SMITH, Stephen D, VÖLJKLEIN, Helmut, A geometric presentation for the adjoint module of SL3(k), Journal of Algebra, Volume 127, Issue 1, 1989, p. 127-138. - https://doi.org/10.1016/0021-8693(89)90278-0
- VÖLKLEIN, Helmut. On the geometry of the adjoint representation of a Chevalley group. Journal of Algebra, 1989, vol. 127, no 1, p. 139-154. - https://doi.org/10.1016/0021-8693(89)90279-2
- BLOK, Rieuwert J. et PASINI, Antonio. On absolutely universal embeddings. Discrete mathematics, 2003, vol. 267, no 1-3, p. 45-62. - https://doi.org/10.1016/S0012-365X(02)00602-7
- BLOK, Rieuwert J. et PASINI, Antonio, Point-line geometries with a generating set that depends on the underlying field, Finite Geometries (eds. A. Blokhuis et al.), Kluwer, Dordrecth, 2001, p. 1-25. - https://doi.org/10.1007/978-1-4613-0283-4_1
- BLOK, Rieuwert J. et PASINI, Antonio. On absolutely universal embeddings. Discrete mathematics, 2003, vol. 267, no 1-3, p. 45-62. - https://doi.org/10.1016/S0012-365X(02)00602-7