En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Finite type invariants of knots in homology 3-spheres

Bookmarks Report an error
Multi angle
Authors : Moussard, Delphine (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : For null-homologous knots in rational homology 3-spheres, there are two equivariant invariants obtained by universal constructions à la Kontsevich, one due to Kricker and defined as a lift of the Kontsevich integral, and the other constructed by Lescop by means of integrals in configuration spaces. In order to explicit their universality properties and to compare them, we study a theory of finite type invariants of null-homologous knots in rational homology 3-spheres. We give a partial combinatorial description of the space of finite type invariants, graded by the degree. This description is complete for knots with a trivial Alexander polynomial, providing explicit universality properties for the Kricker lift and the Lescop equivariant invariant and proving the equivalence of these two invariants for such knots.

Keywords : 3-manifold; knot; homology sphere; beaded Jacobi diagram; Kontsevich
integral; Borromean surgery; null-move; Lagrangian-preserving surgery; finite type
invariant

MSC Codes :
57M27 - Invariants of knots and 3-manifolds

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 07/02/2018
    Conference Date : 30/01/2018
    Subseries : Research talks
    arXiv category : Geometric Topology
    Mathematical Area(s) : Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:23
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-01-30_Moussard.mp4

Information on the Event

Event Title : Representation spaces, Teichmüller theory, and their relationship with 3-manifolds from the classical and quantum viewpoints / Espaces de représentations, théorie de Teichmüller et leur rapport avec les 3-variétés d'un point de vue classique et quantique
Event Organizers : Boileau, Michel ; Kitano, Teruaki ; Morifuji, Takayuki ; Paoluzzi, Luisa
Dates : 29/01/2018 - 02/02/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1891.html

Citation Data

DOI : 10.24350/CIRM.V.19272503
Cite this video as: Moussard, Delphine (2018). Finite type invariants of knots in homology 3-spheres. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19272503
URI : http://dx.doi.org/10.24350/CIRM.V.19272503

See Also

Bibliography



Bookmarks Report an error