En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Meromorphic maps of finite type: parameter space

Bookmarks Report an error
Multi angle
Authors : Fagella, Nuria (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk we present bifurcation phenomena in natural families of rational or (transcendental) meromorphic functions of finite type $\left\{f_{\lambda}:=\varphi_{\lambda} \circ f_{\lambda_{0}} \circ \psi_{\lambda}^{-1}\right\}_{\lambda \in M}$, where $M$ is a complex connected manifold, $\lambda_{0} \in M, f_{\lambda_{0}}$ is a meromorphic map and $\varphi_{\lambda}$ and $\psi_{\lambda}$ are families of quasiconformal homeomorphisms depending holomorphically on $\lambda$ and with $\psi_{\lambda}(\infty)=\infty$. There are fundamental differences compared to the rational or entire setting due to the presence of poles and therefore of parameters for which singular values are eventually mapped to infinity (singular parameters). Under mild conditions we show that singular (asymptotic) parameters are the endpoint of a curve of parameters for which an attracting cycle progressively exits the domain, while its multiplier tends to zero, proving a conjecture from [Fagella, Keen, 2019]. We also present the connections between cycles exiting the domain, singular parameters, activity of singular orbits and $\mathcal{J}$-unstability, converging to a theorem in the spirit of Mañé-Sad-Sullivan's celebrated result.

Keywords : meronorphic functions; Julia sets; J-stability; virtual centers; bifurcations

MSC Codes :
30D05 - Functional equations in the complex domain, iteration and composition of analytic functions
30D30 - Meromorphic functions, general theory
37F10 - Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F46 - Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/11/2021
    Conference Date : 22/09/2021
    Subseries : Research talks
    arXiv category : Dynamical Systems ; Distributed, Parallel, and Cluster Computing
    Mathematical Area(s) : Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:59:41
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-09-22_Fagella.mp4

Information on the Event

Event Title : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
Event Organizers : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk
Dates : 20/09/2021 - 24/09/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2546.html

Citation Data

DOI : 10.24350/CIRM.V.19812303
Cite this video as: Fagella, Nuria (2021). Meromorphic maps of finite type: parameter space. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19812303
URI : http://dx.doi.org/10.24350/CIRM.V.19812303

See Also

Bibliography

  • ASTORG, Matthieu, BENINI, Anna Miriam, et FAGELLA, Núria. Bifurcation loci of families of finite type meromorphic maps. arXiv preprint arXiv:2107.02663, 2021. - https://arxiv.org/abs/2107.02663



Imagette Video

Bookmarks Report an error