Authors : ... (Author of the conference)
... (Publisher )
Abstract :
I'll discuss the Banach algebra structure of the spaces of bounded linear operators on $\ell_p$ and $L_p$ := $L_p(0, 1)$. The main new results are
1. The only non trivial closed ideal in $L(L_p)$, 1 $\leq$ p < $\infty$, that has a left approximate identity is the ideal of compact operators (joint with N. C. Phillips and G. Schechtman).
2. There are infinitely many; in fact, a continuum; of closed ideals in $L(L_1)$ (joint with G. Pisier and G. Schechtman).
The second result answers a question from the 1978 book of A. Pietsch, “Operator ideals”.
MSC Codes :
46E30
- Spaces of measurable functions ($L^p$-spaces, Orlicz spaces, Kothe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47B10
- Operators belonging to operator ideals (nuclear, $p$-summing, in the Schatten-von Neumann classes, etc.)
47L10
- Algebras of operators on Banach spaces and other topological linear spaces
Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1755/Johnson.pdf
Language : English
Available date : 14/03/2018
Conference Date : 06/03/2018
Subseries : Research talks
arXiv category : Functional Analysis
Mathematical Area(s) : Analysis and its Applications
Format : MP4 (.mp4) - HD
Video Time : 00:47:35
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2018-03-06_Johnson.mp4
|
Event Title : Non linear functional analysis / Analyse fonctionnelle non linéaire Dates : 05/03/2018 - 09/03/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1755.html
DOI : 10.24350/CIRM.V.19371503
Cite this video as:
(2018). Ideals in $L(L_p)$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19371503
URI : http://dx.doi.org/10.24350/CIRM.V.19371503
|
See Also
Bibliography