Authors : ... (Author of the conference)
... (Publisher )
Abstract :
Some convergence properties for the approximation of second order elliptic problems with a variety of boundary conditions (homogeneous Dirichlet, homogeneous or non-homogeneous Neumann or Fourier boundary conditions), using a given discretisation method, can be obtained when this method is plugged into the Gradient Discretisation Method (GDM) framework.
Instead of defining one GDM framework for each of these boundary conditions, we show that these properties can be stated using the same abstract tools for all the above boundary conditions. Then these tools enable the application of the GDM to a larger class of elliptic problems.
MSC Codes :
47A58
- Operator approximation theory
65J05
- General theory
65Nxx
- Partial differential equations, boundary value problems
Language : English
Available date : 28/05/2019
Conference Date : 29/04/2019
Subseries : Research talks
arXiv category : Numerical Analysis
Mathematical Area(s) : PDE ; Numerical Analysis & Scientific Computing
Format : MP4 (.mp4) - HD
Video Time : 00:39:36
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2019-04-29_Eymard.mp4
|
Event Title : POEMs - POlytopal Element Methods in Mathematics and Engineering Dates : 29/04/2019 - 03/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1954.html
DOI : 10.24350/CIRM.V.19528603
Cite this video as:
(2019). Gradient discretisations : tools and applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19528603
URI : http://dx.doi.org/10.24350/CIRM.V.19528603
|
See Also
Bibliography
- Jérôme Droniou, Robert Eymard, Thierry Gallouët, Raphaèle Herbin. A unified analysis of elliptic problems with various boundary conditions and their approximation. 2019. - https://hal.archives-ouvertes.fr/hal-01823265
- Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaele Herbin. The gradient discretisation method. Springer International Publishing AG, 82, 2018, Mathématiques et Applications, M. Hoffmann et V. Perrier, 978-3-319-79042-8. - https://hal.archives-ouvertes.fr/hal-01382358