En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Moments of a Thue-Morse generating function

Bookmarks Report an error
Single angle
Authors : Montgomery, Hugh L. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $s(m)$ denote the number of distinct powers of 2 in the binary representation of $m$. Thus the Thue-Morse sequence is $(-1)^{s(m)}$ and
$T_n(x)=\sum_{0\leq m< 2^n}(-1)^{s(m)}e(mx)=\prod_{0\leq r< n}(1-e(2^rx))$
is a trigonometric generating generating function of the sequence. The work of Mauduit and Rivat on $(-1)^{s(p)}$ depends on nontrivial bounds for $\left \| T_n \right \|_1$ and for $\left \| T_n \right \|_\infty $. We consider other norms of the $T_n$. For positive integers $k$ let
$M_k(n)=\int_{0}^{1}\left | T_n(x) \right |^{2k}dx$
We show that the sequence $M_k(n)$ satisfies a linear recurrence of order $k$. Moreover, we determine a $k\times k$ matrix whose characteristic polynomial determines this linear recurrence.
This is joint work with Mauduit and Rivat.

MSC Codes :
11B83 - Special sequences and polynomials

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 20/10/14
    Conference Date : 12/02/14
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:24:02
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-02-12_Montgomery.mp4

Information on the Event

Event Title : Prime numbers : new perspectives / Nombres premiers : nouvelles perspectives
Event Organizers : Dartyge, Cécile ; Mauduit, Christian ; Rivat, Joël ; Stoll, Thomas
Dates : 10/02/14 - 14/02/14
Event Year : 2014

Citation Data

DOI : 10.24350/CIRM.V.18610603
Cite this video as: Montgomery, Hugh L. (2014). Moments of a Thue-Morse generating function. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18610603
URI : http://dx.doi.org/10.24350/CIRM.V.18610603

Bibliography



Bookmarks Report an error