Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the representation comes from a $Q_{p}$-representation of a $p$-adic Lie group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen-Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.
Keywords : Sen operator; Galois representation; p-adic Simpson correspondence; locally analytic vector
Codes MSC :
11F80
- Galois representations
14F30
- $p$-adic cohomology, crystalline cohomology
14F35
- Homotopy theory; fundamental groups
|
Informations sur la Rencontre
Nom de la rencontre : Franco-Asian Summer School on Arithmetic Geometry in Luminy / Ecole d'été franco-asiatique sur la géométrie arithmétique à Luminy Dates : 30/05/2022 - 03/06/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2534.html
DOI : 10.24350/CIRM.V.19927803
Citer cette vidéo:
(2022). Sen operators and Lie algebras arising from Galois representations over p-adic varieties. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19927803
URI : http://dx.doi.org/10.24350/CIRM.V.19927803
|
Voir aussi
Bibliographie
- SEN, Shankar. Continuous cohomology and p-adic Galois representations. Invent. math, 1980, vol. 62, no 1, p. 89-116. - https://dx.doi.org/10.1007/BF01391665
- BRINON, Olivier. Une généralisation de la théorie de Sen. Mathematische Annalen, 2003, vol. 327, no 4, p. 793-813. - https://doi.org/10.1007/s00208-003-0472-3
- OHKUBO, Shun. On Lie algebras arising from p-adic representations in the imperfect residue field case. Journal of Algebra, 2014, vol. 406, p. 134-142. - https://doi.org/10.1016/j.jalgebra.2014.02.021
- TSUJI, Takeshi. Notes on the local p-adic Simpson correspondence. Mathematische Annalen, 2018, vol. 371, no 1, p. 795-881. - https://doi.org/10.1007/s00208-018-1655-2
- PAN, Lue. On locally analytic vectors of the completed cohomology of modular curves. In : Forum of Mathematics, Pi. Cambridge University Press, 2022. - https://doi.org/10.1017/fmp.2022.1