En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Floodgate: inference for model-free variable importance

    Sélection Signaler une erreur
    Virtualconference
    Auteurs : Janson, Lucas (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Many modern applications seek to understand the relationship between an outcome variable of interest and a high-dimensional set of covariates. Often the first question asked is which covariates are important in this relationship, but the immediate next question, which in fact subsumes the first, is \emph{how} important each covariate is in this relationship. In parametric regression this question is answered through confidence intervals on the parameters. But without making substantial assumptions about the relationship between the outcome and the covariates, it is unclear even how to \emph{measure} variable importance, and for most sensible choices even less clear how to provide inference for it under reasonable conditions. In this paper we propose \emph{floodgate}, a novel method to provide asymptotic inference for a scalar measure of variable importance which we argue has universal appeal, while assuming nothing but moment bounds about the relationship between the outcome and the covariates. We take a model-X approach and thus assume the covariate distribution is known, but extend floodgate to the setting that only a \emph{model} for the covariate distribution is known and also quantify its robustness to violations of the modeling assumptions. We demonstrate floodgate's performance through extensive simulations and apply it to data from the UK Biobank to quantify the effects of genetic mutations on traits of interest.

    Keywords : Variable importance; effect size; model-X; heterogeneous treatment effects; heritability

    Codes MSC :
    62G15 - Tolerance and confidence regions
    62G20 - Nonparametric asymptotic efficiency

    Ressources complémentaires :
    https://www.cirm-math.com/uploads/2/6/6/0/26605521/janson.pdf

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 15/06/2020
      Date de captation : 05/06/2020
      Sous collection : Research talks
      arXiv category : Statistics ; Methodology
      Domaine : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:48:44
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2020-06-05_Janson.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
    Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
    Dates : 15/06/2020 - 19/06/2020
    Année de la rencontre : 2020
    URL Congrès : https://www.cirm-math.com/cirm-virtual-...

    Données de citation

    DOI : 10.24350/CIRM.V.19641303
    Citer cette vidéo: Janson, Lucas (2020). Floodgate: inference for model-free variable importance. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19641303
    URI : http://dx.doi.org/10.24350/CIRM.V.19641303

    Voir aussi

    Bibliographie



    Imagette Video

    Sélection Signaler une erreur
    Close