Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
This partly expository talk focuses on the notion of ”symplectic Landau-Ginzburg models”, i.e. symplectic manifolds equipped with maps to the complex plane, ”stops”, or both, as they naturally arise in the context of mirror symmetry. We describe several viewpoints on these spaces and their Fukaya categories, their monodromy, and the functors relating them to other flavors of Fukaya categories. (This touches on work of Abouzaid, Seidel, Ganatra, Hanlon, Sylvan, Jeffs, and others).
Keywords : Fukaya categories; homological mirror symmetry; symplectic fibrations
Codes MSC :
53D40
- Floer homology and cohomology, symplectic aspects
53D37
- Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14J33
- Mirror symmetry
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2558/Slides/Auroux.pdf
|
Informations sur la Rencontre
Nom de la rencontre : From Hamiltonian Dynamics to Symplectic Topology Dates : 26/04/2021 - 30/04/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2558.html
DOI : 10.24350/CIRM.V.19750303
Citer cette vidéo:
(2021). Symplectic Landau-Ginzburg models and their Fukaya categories. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19750303
URI : http://dx.doi.org/10.24350/CIRM.V.19750303
|
Voir aussi
Bibliographie
- ABOUZAID, Mohammed, AUROUX, Denis. Homological mirror symmetry for hypersurfaces in $(C*)^n$, in preparation. -
- HANLON, Andrew. Monodromy of monomially admissible Fukaya-Seidel categories mirror to toric varieties. Advances in Mathematics, 2019, vol. 350, p. 662-746. - https://doi.org/10.1016/j.aim.2019.04.056
- JEFFS, Maxim. Mirror symmetry and Fukaya categories of singular hypersurfaces. arXiv preprint arXiv:2012.09764, 2020. - https://arxiv.org/abs/2012.09764