https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Galois theory and walks in the quarter plane
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    2

    Galois theory and walks in the quarter plane

    Sélection Signaler une erreur
    Post-edited
    Auteurs : Hardouin, Charlotte (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     
    differential relations for special functions Galois theoretic approach differential transcendence criteria walks in the quarter plane geometric uniformisation functional equation for genus zero walks functional equation genus one telescoper criteria for differential transcendence orbit residue genus zero orbit residue genus one ultrametric framework questions from the audience

    Résumé : In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a discrete functional equation over a curve E, of genus zero or one. In the first case, the functional equation corresponds to a so called q-difference equation and all the related generating series are differentially transcendental. For the genus one case, the dynamic of the functional equation corresponds to the addition by a given point P of the elliptic curve E. In that situation, one can relate the nature of the generating series to the fact that the point P is of torsion or not.

    Codes MSC :
    05A15 - Exact enumeration problems, generating functions
    12F10 - Separable extensions, Galois theory
    12H05 - Differential algebra
    12H10 - Difference algebra
    30D05 - Functional equations in the complex domain, iteration and composition of analytic functions
    39A13 - Difference equations, scaling (q-differences)

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 06/06/2018
      Date de captation : 30/05/2018
      Sous collection : Research talks
      arXiv category : Combinatorics ; Number Theory
      Domaine : Combinatorics ; Number Theory
      Format : MP4 (.mp4) - HD
      Durée : 00:49:31
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2018-05-30_Hardouin.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Algebra, arithmetic and combinatorics of differential and difference equations / Algèbre, arithmétique et combinatoire des équations différentielles et aux différences
    Organisateurs de la rencontre : Adamczewski, Boris ; Delaygue, E. ; Raschel, Kilian ; Roques, Julien
    Dates : 28/05/2018 - 01/06/2018
    Année de la rencontre : 2018
    URL Congrès : https://conferences.cirm-math.fr/1761.html

    Données de citation

    DOI : 10.24350/CIRM.V.19409503
    Citer cette vidéo: Hardouin, Charlotte (2018). Galois theory and walks in the quarter plane. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19409503
    URI : http://dx.doi.org/10.24350/CIRM.V.19409503

    Voir aussi

    Bibliographie



    Sélection Signaler une erreur
    Close