En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
0

Totally disconnected groups (not) acting on three-manifolds

Bookmarks Report an error
Single angle
Authors : Pardon, John (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Hilbert's Fifth Problem asks whether every topological group which is a manifold is in fact a (smooth!) Lie group; this was solved in the affirmative by Gleason and Montgomery-Zippin. A stronger conjecture is that a locally compact topological group which acts faithfully on a manifold must be a Lie group. This is the Hilbert--Smith Conjecture, which in full generality is still wide open. It is known, however (as a corollary to the work of Gleason and Montgomery-Zippin) that it suffices to rule out the case of the additive group of p-adic integers acting faithfully on a manifold. I will present a solution in dimension three.

MSC Codes :
57N10 - Topology of general 3-manifolds

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 13/10/14
    Conference Date : 21/01/14
    Subseries : Research talks
    arXiv category : Geometric Topology
    Mathematical Area(s) : Topology ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:50
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-01-21_Pardon.mp4

Information on the Event

Event Title : Third young geometric group theory meeting / Troisième rencontre des jeunes chercheurs en géométrie des groupes
Event Organizers : Guéritaud, François ; Kassel, Fanny ; Labourie, François ; Manning, Jason
Dates : 20/01/14 - 24/01/14
Event Year : 2014
Event URL : http://math.univ-lille1.fr/~kassel/yggt3.html

Citation Data

DOI : 10.24350/CIRM.V.18608103
Cite this video as: Pardon, John (2014). Totally disconnected groups (not) acting on three-manifolds. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18608103
URI : http://dx.doi.org/10.24350/CIRM.V.18608103

Bibliography



Bookmarks Report an error