Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
The purpose of this article is to give new constructions of linear orders which are minimal with respect to being non-σ-scattered. Specifically, we will show that Jensen's principle ♢ implies that there is a minimal Countryman line, answering a question of Baumgartner. We also produce the first consistent examples of minimal non-σ-scattered linear orders of cardinality greater than ℵ1, as given a successor cardinal κ+, we obtain such linear orderings of cardinality κ+ with the additional property that their square is the union of κ-many chains. We give two constructions: directly building such examples using forcing, and also deriving their existence from combinatorial principles. The latter approach shows that such minimal non-σ-scattered linear orders of cardinality κ+ exist for every cardinal κ in Gödel's constructible universe, and also (using work of Rinot) that examples must exist at successors of singular strong limit cardinals in the absence of inner models satisfying the existence of a measurable cardinal μ of Mitchell order μ++.
Mots-Clés : Aronszajn line; Aronszajn tree; constructible universe; Countryman line; forcing; linear order; minimal; scattered
Codes MSC :
03E35
- Consistency and independence results
03E45
- Constructibility, ordinal definability, and related notions
06A05
- Total order
03E04
- Ordered sets and their cofinalities
|
Informations sur la Rencontre
Nom de la Rencontre : XVII International Luminy Workshop in Set Theory / XVII Atelier International de Théorie des Ensembles Dates : 09/10/2023 - 13/10/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2860.html
DOI : 10.24350/CIRM.V.20105403
Citer cette vidéo:
(2023). Large minimal non-sigma-scattered linear orders. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20105403
URI : http://dx.doi.org/10.24350/CIRM.V.20105403
|
Voir Aussi
Bibliographie
- EISWORTH, Todd, CUMMINGS, James, et MOORE, Justin Tatch. On minimal non-$\sigma $-scattered linear orders. arXiv preprint arXiv:2304.03389, 2023. - https://arxiv.org/abs/2304.03389