En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Crystalline cohomology, period maps, and applications to K3 surfaces

Bookmarks Report an error
Multi angle
Authors : Liedtke, Christian (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will first introduce K3 surfaces and determine their algebraic deRham cohomology. Next, we will see that crystalline cohomology (no prior knowledge assumed) is the "right" replacement for singular cohomology in positive characteristic. Then, we will look at one particular class of K3 surfaces more closely, namely, supersingular K3 surfaces. These have Picard rank 22 (note: in characteristic zero, at most rank 20 is possible) and form 9-dimensional moduli spaces. For supersingular K3 surfaces, we will see that there exists a period map and a Torelli theorem in terms of crystalline cohomology. As an application of the crystalline Torelli theorem, we will show that a K3 surface is supersingular if and only if it is unirational.

MSC Codes :
14D22 - Fine and coarse moduli spaces
14J28 - $K3$ surfaces and Enriques surfaces
14M20 - Rational and unirational varieties
14G17 - Positive characteristic ground fields

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 20/09/16
    Conference Date : 13/09/16
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:54:02
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-09-13_Liedtke.mp4

Information on the Event

Event Title : Higher dimensional algebraic geometry and characteristic p > 0 / Géométrie algébrique en dimension supérieure et caractéristique p > 0
Event Organizers : Blickle, Manuel ; Schwede, Karl ; Xu, Chenyang
Dates : 12/09/16 - 16/09/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1376.html

Citation Data

DOI : 10.24350/CIRM.V.19049303
Cite this video as: Liedtke, Christian (2016). Crystalline cohomology, period maps, and applications to K3 surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19049303
URI : http://dx.doi.org/10.24350/CIRM.V.19049303

See Also

Bibliography



Bookmarks Report an error