Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
Our goal is the study of the local dynamics of tangent to the identity biholomorphisms in C2, and more precisely of the existence of invariant manifolds. In the first lecture we will focus on the problem of existence of invariant curves for two-dimensional vector fields and present some classical results: Seidenberg's resolution of singularities, Briot-Bouquet theorem and Camacho-Sad theorem. In the second lecture we will present the first results of existence of 1-dimensional invariant manifolds for tangent to the identity biholomorphisms obtained by Ecalle/Hakim and Abate, connecting them to the corresponding results for vector fields. In the third lecture we will discuss two extensions of the previous results, obtained in collaboration with Jasmin Raissy, Fernando Sanz, Javier Ribon, Rudy Rosas and Liz Vivas.
Keywords : holomorphic dynamics; stable manifolds; invariant curves
Codes MSC :
37F80
- Higher-dimensional holomorphic and meromorphic dynamics
37C25
- Fixed points, periodic points, fixed-point index theory
32M25
- Complex vector fields
|
Informations sur la Rencontre
Nom de la rencontre : Foliations, birational geometry and applications - Thematic Month Week 2 / Feuilletages, géométrie birationnelle et applications - Mois thématique semaine 2 Dates : 03/02/2025 - 07/02/2025
Année de la rencontre : 2025
URL Congrès : https://conferences.cirm-math.fr/3268.html
DOI : 10.24350/CIRM.V.20299103
Citer cette vidéo:
(2025). Local dynamics of tangent to the identity biholomorphisms in dimension two lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20299103
URI : http://dx.doi.org/10.24350/CIRM.V.20299103
|
Voir aussi
Bibliographie
- ABATE, Marco. The residual index and the dynamics of holomorphic maps tangent to the identity. Duke Math. J. 107 (2001), no. 1, 173-207 - https://doi.org/10.1215/S0012-7094-01-10719-9
- ECALLE, Jean. Les fonctions résurgentes. Tome III. L'équation du pont et la classification analytique des objects locaux. Publications Mathématiques d'Orsay, 85-5, 1985 - http://sites.mathdoc.fr/PMO/PDF/E_ECALLE_85_05.pdf
- HAKIM, Monique. Analytic transformations of (C p, 0) tangent to the identity. Duke Math. J. 92 (1998) n°2, 403-428. - https://doi.org/10.1215/S0012-7094-98-09212-2
- LÓPEZ-HERNANZ, Lorena et SANZ SÁNCHEZ, Fernando. Parabolic curves of diffeomorphisms asymptotic to formal invariant curves. Journal für die reine und angewandte Mathematik (Crelles Journal), 2018, vol. 2018, no 739, p. 277-296. - https://doi.org/10.1515/crelle-2015-0064
- LÓPEZ-HERNANZ, Lorena, RIBÓN, Javier, SÁNCHEZ, Fernando Sanz, et al. Stable manifolds of biholomorphisms in $\mathbb {C}^ n $ asymptotic to formal curves. Proc. Lond. Math. Soc. 125 (2020), no. 2, 277-317. - https://doi.org/10.1112/plms.12447
- LÓPEZ-HERNANZ, Lorena et ROSAS, Rudy. Characteristic directions of two-dimensional biholomorphisms. Compositio Mathematica, 2020, vol. 156, no 5, p. 869-880. - https://doi.org/10.1112/S0010437X20007071
- LÓPEZ-HERNANZ, Lorena, RAISSY, Jasmin, RIBÓN, Javier, et al. Stable manifolds of two-dimensional biholomorphisms asymptotic to formal curves. International Mathematics Research Notices, 2021, vol. 2021, no 17, p. 12847-12887. - https://doi.org/10.1093/imrn/rnz143