Authors : ... (Author of the conference)
... (Publisher )
Abstract :
In this lecture we focus on selected topics around the themes: Delone sets as models for quasicrystals, inflation symmetries and expansion constants, substitution Delone sets and tilings, and associated dynamical systems.
MSC Codes :
37B50
- Multi-dimensional shifts of finite type, tiling dynamics
52C23
- Quasicrystals, aperiodic tilings
Language : English
Available date : 28/11/2017
Conference Date : 22/11/2017
Subseries : Research School
arXiv category : Dynamical Systems ; Metric Geometry
Mathematical Area(s) : Dynamical Systems & ODE ; Geometry
Format : MP4 (.mp4) - HD
Video Time : 01:21:10
Targeted Audience : Researchers ; Graduate Students
Download : https://videos.cirm-math.fr/2017-11-22_Solomyak.mp4
|
Event Title : Jean-Morlet chair - Research school: Tiling dynamical system / Chaire Jean-Morlet - École de recherche : Pavages et systèmes dynamiques Dates : 20/11/2017 - 24/11/2017
Event Year : 2017
Event URL : https://www.chairejeanmorlet.com/1720.html
DOI : 10.24350/CIRM.V.19249103
Cite this video as:
(2017). Lecture on Delone sets and tilings. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19249103
URI : http://dx.doi.org/10.24350/CIRM.V.19249103
|
See Also
Bibliography
- Lagarias, J.C., & Wang, Y. (2003). Substitution Delone sets. Discrete and Computational Geometry, 29(2), 175-209 - http://dx.doi.org/10.1007/s00454-002-2820-6
- Lagarias, J.C. (2000). Mathematical quasicrystals and the problem of diffraction. In M. Baake, & R.V. Moody (Eds.), Directions in Mathematical Quasicrystals (pp. 61-93). Providence, RI: American Mathematical Society - http://bookstore.ams.org/crmm-13/
- Lagarias, J.C. (1999). Geometric models for quasicrystals I. Delone sets of finite type. Discrete and Computational Geometry, 21(2), 161-191 - http://dx.doi.org/10.1007/PL00009413
- Thurston, W.P (1989). Groups, tilings, and finite state automata. AMS colloquium lecture notes, 1989 -