En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Monogenic cubic fields and local obstructions

Bookmarks Report an error
Multi angle
Authors : Shnidman, Ari (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A number field is monogenic if its ring of integers is generated by a single element. It is conjectured that for any degree d > 2, the proportion of degree d number fields which are monogenic is 0. There are local obstructions that force this proportion to be < 100%, but beyond this very little is known. I'll discuss work with Alpoge and Bhargava showing that a positive proportion of cubic fields (d = 3) have no local obstructions and yet are still not monogenic. This uses new results on ranks of Selmer groups of elliptic curves in twist families.

Keywords : cubic fields; elliptic curves

MSC Codes :
11G05 - Elliptic curves over global fields
11R16 - Cubic and quartic extensions

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 20/12/2019
    Conference Date : 05/12/2019
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:54:21
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-12-05_Shnidman.mp4

Information on the Event

Event Title : Zeta Functions / Fonctions Zêta
Event Organizers : Armana, Cécile ; Fiorilli, Daniel ; Jouve, Florent ; Louboutin, Stephane
Dates : 02/12/2019 - 06/12/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2062.html

Citation Data

DOI : 10.24350/CIRM.V.19586203
Cite this video as: Shnidman, Ari (2019). Monogenic cubic fields and local obstructions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19586203
URI : http://dx.doi.org/10.24350/CIRM.V.19586203

See Also

Bibliography



Bookmarks Report an error