En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Spectral measures of factor of i.i.d. processes on the regular tree

Bookmarks Report an error
Multi angle
Authors : Backhausz, Agnes (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We prove that a measure on $[-d,d]$ is the spectral measure of a factor of i.i.d. process on a vertex-transitive infinite graph if and only if it is absolutely continuous with respect to the spectral measure of the graph. Moreover, we show that the set of spectral measures of factor of i.i.d. processes and that of $\bar{d}_2$-limits of factor of i.i.d. processes are the same.

MSC Codes :
05C80 - Random graphs
60G15 - Gaussian processes

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/01/16
    Conference Date : 07/01/16
    Subseries : Research talks
    arXiv category : Probability ; Combinatorics
    Mathematical Area(s) : Combinatorics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:54:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-01-07_Backhausz.mp4

Information on the Event

Event Title : Spectre de graphes aléatoires / Spectrum of random graphs
Event Organizers : Bordenave, Charles ; Guionnet, Alice ; Virág, Bálint
Dates : 04/01/16 - 08/01/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1186.html

Citation Data

DOI : 10.24350/CIRM.V.18912703
Cite this video as: Backhausz, Agnes (2016). Spectral measures of factor of i.i.d. processes on the regular tree. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18912703
URI : http://dx.doi.org/10.24350/CIRM.V.18912703

See Also

Bibliography



Bookmarks Report an error