Authors : Swanson, Kristin (Author of the conference)
CIRM (Publisher )
Abstract :
Glioblastoma are notoriously aggressive, malignant primary brain tumors that have variable response to treatment. This presentation will focus on the integrative role of 1) biological sex-differences, 2) heterogeneity in drug-delivery and 3) intra-tumoral molecular diversity (revealed by radiomics) in capturing and predicting this variable response to treatment. Specifically, I will highlight burgeoning insights into sex differences in tumor incidence, outcomes, propensity and response to therapy. I will further, quantify the degree to which heterogeneity in drug delivery, even for drugs that are able to bypass the blood-brain barrier, contributes to differences in treatment response. Lastly, I will propose an integrative role for spatially resolved MRI-based radiomics models to reveal the intra-tumoral biological heterogeneity that can be used to guide treatment targeting and management.
Keywords : mathematical oncology
MSC Codes :
92C50
- Medical applications of mathematical biology
Film maker : Hennenfent, Guillaume
Language : English
Available date : 01/07/2022
Conference Date : 07/06/2022
Subseries : Research School
arXiv category : Quantitative Biology
Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Computer Science ; Control Theory & Optimization ; PDE
Format : MP4 (.mp4) - HD
Video Time : 00:34:33
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2022-06-07_Swanson.mp4
|
Event Title : Dynamics and Statistics of Cancer Evolution : Applying Mathematics to Experimental and Clinical Data / Evolution tumorale, dynamique et statistiques: mathématiques pour données cliniques & expérimentales Event Organizers : Curtius, Kathleen ; Huang, Weini ; Martinez, Pierre ; Werner, Benjamin ; Williams, Marc Dates : 06/06/2022 - 10/06/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2409.html
DOI : 10.24350/CIRM.V.19931803
Cite this video as:
Swanson, Kristin (2022). Every patient deserves their own equation: Sex, drugs and radiomics of brain Cancer. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19931803
URI : http://dx.doi.org/10.24350/CIRM.V.19931803
|
See Also
Bibliography
- HU, Leland S., WANG, Lujia, HAWKINS-DAARUD, Andrea, et al. Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Scientific reports, 2021, vol. 11, no 1, p. 1-14. - https://doi.org/10.1038/s41598-021-83141-z
- MASSEY, Susan Christine, WHITMIRE, Paula, DOYLE, Tatum E., et al. Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer letters, 2021, vol. 498, p. 178-187. - https://doi.org/10.1016/j.canlet.2020.07.030
- URCUYO, Javier C., MASSEY, Susan Christine, HAWKINS-DAARUD, Andrea, et al. Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity. bioRxiv, 2021. - https://doi.org/10.1101/2021.12.07.471540
- WHITMIRE, Paula, RICKERTSEN, Cassandra R., HAWKINS-DAARUD, Andrea, et al. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. BMC cancer, 2020, vol. 20, no 1, p. 1-10. - https://doi.org/10.1186/s12885-020-06816-2
- MORRIS, Bethan, CURTIN, Lee, HAWKINS-DAARUD, Andrea, et al. Identifying the spatial and temporal dynamics of molecularly-distinct glioblastoma sub-populations. Mathematical biosciences and engineering: MBE, 2020, vol. 17, no 5, p. 4905. - https://doi.org/10.3934/mbe.2020267
- SINGLETON, Kyle W., PORTER, Alyx B., HU, Leland S., et al. Days gained response discriminates treatment response in patients with recurrent glioblastoma receiving bevacizumab-based therapies. Neuro-oncology advances, 2020, vol. 2, no 1, p. vdaa085. - https://doi.org/10.1093/noajnl/vdaa085
- GAW, Nathan, HAWKINS-DAARUD, Andrea, HU, Leland S., et al. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Scientific reports, 2019, vol. 9, no 1, p. 1-9. - https://doi.org/10.1038/s41598-019-46296-4
- HAWKINS-DAARUD, Andrea, JOHNSTON, Sandra K., et SWANSON, Kristin R. Quantifying uncertainty and robustness in a biomathematical model–based patient-specific response metric for glioblastoma. JCO clinical cancer informatics, 2019, vol. 3, p. 1-8. - http://dx.doi.org/10.1200/CCI.18.00066
- YANG, Wei, WARRINGTON, Nicole M., TAYLOR, Sara J., et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Science translational medicine, 2019, vol. 11, no 473, p. eaao5253. - https://doi.org/10.1126/scitranslmed.aao5253