En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Transferring information across image and shape collections

Bookmarks Report an error
Multi angle
Authors : Mitra, Niloy (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Large image and 3D model repositories of everyday objects are now ubiquitous and are increasingly being used in computer graphics and computer vision, both for analysis and synthesis. However, images of objects in the real world have a richness of appearance that these repositories do not capture, largely because most existing 3D models are untextured. In this work we develop an automated pipeline capable of linking the two collections, and transporting texture information from images of real objects to 3D models of similar objects. This is a challenging problem, as an object's texture as seen in a photograph is distorted by many factors, including pose, geometry, and illumination. These geometric and photometric distortions must be undone in order to transfer the pure underlying texture to a new object ? the 3D model. Instead of using problematic dense correspondences, we factorize the problem into the reconstruction of a set of base textures (materials) and an illumination model for the object in the image. By exploiting the geometry of the similar 3D model, we reconstruct certain reliable texture regions and correct for the illumination, from which a full texture map can be recovered and applied to the model. Our method allows for large-scale unsupervised production of richly textured 3D models directly from image data, providing high quality virtual objects for 3D scene design or photo editing applications, as well as a wealth of data for training machine learning algorithms for various inference tasks in graphics and vision. For more details, please visit: geometry.cs.ucl.ac.uk.

MSC Codes :
65D18 - Computer graphics, image analysis, and computational geometry
68U10 - Image processing (computing aspects)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 10/11/16
    Conference Date : 02/11/2016
    Subseries : Research talks
    arXiv category : Computer Vision and Pattern Recognition
    Mathematical Area(s) : Computer Science ; Analysis and its Applications ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:47:37
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-11-02_Mitra.mp4

Information on the Event

Event Title : SIGMA (Signal-Image-Geometry-Modelling-Approximation) / SIGMA (Signal-Image-Géométrie-Modélisation-Approximation)
Event Organizers : Beckermann, Bernhard ; Chazal, Frédéric ; Lyche, Tom ; Mazure, Marie-Laurence ; Peyré, Gabriel
Dates : 31/10/2016 - 04/11/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1506.html

Citation Data

DOI : 10.24350/CIRM.V.19081303
Cite this video as: Mitra, Niloy (2016). Transferring information across image and shape collections. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19081303
URI : http://dx.doi.org/10.24350/CIRM.V.19081303

See Also

Bibliography



Bookmarks Report an error