En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Finite dimensional Hilbert space: spin coherent, basis coherent and anti-coherent states

Bookmarks Report an error
Multi angle
Authors : Zyczkowski, Karol (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Among the set of all pure states living in a finite dimensional Hilbert space $\mathcal{H}_N$one distinguishes subsets of states satisfying some natural condition. One basis independent choice, consist in selecting the spin coherent states, corresponding to the $SU(2)$ group, or generalized, $SU(K)$ coherent states. Another often studied example is basis dependent, as states coherent with respect to a given basis are distinguished by the fact that the moduli of their off-diagonal elements (called 'coherences') are as large as possible. It is natural to define 'anti-coherent' states, which are maximally distant to the set of coherent states and to quantify the degree of coherence of a given state can by its distance to the set of anti-coherent states. For instance, the separable states of a system composed of two subsystems with $N$ levels are coherent with respect to the composite group $SU(N)\times SU(N)$, while in this setup, the anti-coherent states are maximally entangled.

MSC Codes :
46C05 - Hilbert and pre-Hilbert spaces: geometry and topology
81R30 - Coherent states; squeezed states (quantum theory)
81P40 - Quantum coherence, entanglement, quantum correlations

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 23/11/2016
    Conference Date : 17/11/2016
    Subseries : Research talks
    arXiv category : Quantum Physics
    Mathematical Area(s) : Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:19
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-11-17_Zyczkowski.mp4

Information on the Event

Event Title : Coherent states and their applications: a contemporary panorama / Etats cohérents et leurs applications : un panorama contemporain
Event Organizers : Antoine, Jean-Pierre ; Bagarello, Fabio ; Gazeau, Jean-Pierre ; Ali, Syed Twareque
Dates : 14/11/2016 - 18/11/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1461.html

Citation Data

DOI : 10.24350/CIRM.V.19090903
Cite this video as: Zyczkowski, Karol (2016). Finite dimensional Hilbert space: spin coherent, basis coherent and anti-coherent states. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19090903
URI : http://dx.doi.org/10.24350/CIRM.V.19090903

See Also

Bibliography

  • Puchala, Z., Rudnicki, L., Chabuda, K., Paraniak, M., & Zyczkowski, K. (2015). Certainty relations, mutual entanglement and non-displacable manifolds. Physical Review A, 92(3), 032109 - https://doi.org/10.1103/PhysRevA.92.032109



Bookmarks Report an error