Authors : Terracini, Susanna (Author of the conference)
CIRM (Publisher )
Abstract :
In this talk we deal with the regularity of optimal sets for a shape optimization problem involving a combination
of eigenvalues, under a fixed volume constraints. As a model problem, consider
\[
\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d,\ \text{open}\ ,\ |\Omega|=1\Big\},
\]
where $\langle_i(\cdot)$ denotes the eigenvalues of the Dirichlet Laplacian and $|\cdot|$ the $d$-dimensional Lebesgue measure.
We prove that any minimizer $_{opt}$ has a regular part of the topological boundary which is relatively open and
$C^{\infty}$ and that the singular part has Hausdorff dimension smaller than $d-d^*$, where $d^*\geq 5$ is the minimal
dimension allowing the existence of minimal conic solutions to the blow-up problem.
We mainly use techniques from the theory of free boundary problems, which have to be properly extended to the case of
vector-valued functions: nondegeneracy property, Weiss-like monotonicity formulas with area term; finally through the
properties of non tangentially accessible domains we shall be in a position to exploit the ''viscosity'' approach recently proposed by De Silva.
This is a joint work with Dario Mazzoleni and Bozhidar Velichkov.
MSC Codes :
35R35
- Free boundary problems
47A75
- Eigenvalue problems (linear operators)
49Q10
- Optimization of shapes other than minimal surfaces
49R05
- Variational methods for eigenvalues of operators
Additional resources :
http://www.cirm-math.fr/ProgWeebly/Renc1489/Terracini.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 01/12/2016
Conference Date : 24/11/16
Subseries : Research talks
arXiv category : Analysis of PDEs ; Functional Analysis ; Optimization and Control
Mathematical Area(s) : Control Theory & Optimization ; PDE
Format : MP4 (.mp4) - HD
Video Time : 00:42:59
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2016-11-24_Terracini.mp4
|
Event Title : Shape optimization and isoperimetric and functional inequalities / Optimisation de formes et inégalités isopérimétriques et fonctionnelles Event Organizers : Bucur, Dorin ; Buttazzo, Giuseppe ; Henrot, Antoine ; Pratelli, Aldo Dates : 21/11/16 - 25/11/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1489.html
DOI : 10.24350/CIRM.V.19095603
Cite this video as:
Terracini, Susanna (2016). Regularity of the optimal sets for spectral functionals. Part I: sum of eigenvalues. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19095603
URI : http://dx.doi.org/10.24350/CIRM.V.19095603
|
See Also
Bibliography