En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 3

Bookmarks Report an error
Multi angle
Authors : Seppäläinen, Timo (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Kardar-Parisi-Zhang fluctuation exponent for the last-passage value of the two-dimensional corner growth model with exponential weights. We sketch the proof of the fluctuation exponent for the stationary corner growth process, and if time permits indicate how the exponent is derived for the percolation process with i.i.d. weights.

MSC Codes :
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
60K37 - Processes in random environments
82C22 - Interacting particle systems
82C43 - Time-dependent percolation
82D60 - Polymers (statistical mechanics)

Additional resources :
http://www.cirm-math.fr/ProgWeebly/Renc1559/Seppalainen.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 16/03/17
    Conference Date : 10/03/17
    Subseries : Research School
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 01:34:58
    Targeted Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-03-10_Seppalainen_Part3.mp4

Information on the Event

Event Title : Jean-Morlet Chair - Doctoral school: Random structures in statistical mechanics and mathematical physics / Chaire Jean-Morlet - Ecole doctorale : Structures aléatoires en mécanique statistique et physique mathématique
Event Organizers : Khanin, Konstantin ; Seppäläinen, Timo ; Shlosman, Senya
Dates : 06/03/17 - 10/03/17
Event Year : 2017
Event URL : https://www.chairejeanmorlet.com/1559.html

Citation Data

DOI : 10.24350/CIRM.V.19138903
Cite this video as: Seppäläinen, Timo (2017). Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19138903
URI : http://dx.doi.org/10.24350/CIRM.V.19138903

See Also

Bibliography

  • Balázs, M., Cator, E., & Seppäläinen, T. (2006). Cube root fluctuations for the corner growth model associated to the exclusion process. Electronic Journal of Probability, 11(42), 1094–1132 - https://arxiv.org/abs/math/0603306

  • Balázs, M., & Seppäläinen, T. (2010). Order of current variance and diffusivity in the asymmetric simple exclusion process. Annals of Mathematics. Second Series, 171(2), 1237–1265 - http://dx.doi.org/10.4007/annals.2010.171.1237

  • Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2015). Ratios of partition functions for the log-gamma polymer. The Annals of Probability, 43(5), 2282–2331 - http://projecteuclid.org/euclid.aop/1441792286

  • Georgiou, N., Rassoul-Agha, F., & Seppäläinen, T. (2016). Variational formulas and cocycle solutions for directed polymer and percolation models. Communications in Mathematical Physics, 346(2), 741–779 - http://dx.doi.org/10.1007/s00220-016-2613-z

  • Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2013). Quenched free energy and large deviations for random walks in random potentials. Communications on Pure and Applied Mathematics, 66(2), 202–244 - http://dx.doi.org/10.1002/cpa.21417

  • Rassoul-Agha, F., & Seppäläinen, T. (2014). Quenched point-to-point free energy for random walks in random potentials. Probability Theory and Related Fields, 158(3-4), 711–750 - http://dx.doi.org/10.1007/s00440-013-0494-z



Bookmarks Report an error