En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

de Rham theorem in non-Archimedean analytic geometry

Bookmarks Report an error
Multi angle
Authors : Berkovich, Vladimir (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.

MSC Codes :
14F20 - Étale and other Grothendieck topologies and cohomologies
14F40 - de Rham cohomology
14G22 - Rigid analytic geometry
32P05 - Non-Archimedean complex analysis
32S30 - Deformations of singularities; vanishing cycles

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/04/17
    Conference Date : 28/03/17
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-03-28_Berkovich.mp4

Information on the Event

Event Title : $p$-adic analytic geometry and differential equations / Géométrie analytique et équations différentielles $p$-adiques
Event Organizers : Lebacque, Philippe ; Nicaise, Johannes ; Poineau, Jérôme
Dates : 27/03/17 - 31/03/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1609.html

Citation Data

DOI : 10.24350/CIRM.V.19153703
Cite this video as: Berkovich, Vladimir (2017). de Rham theorem in non-Archimedean analytic geometry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19153703
URI : http://dx.doi.org/10.24350/CIRM.V.19153703

See Also

Bibliography



Bookmarks Report an error