En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Large character sums

Bookmarks Report an error
Multi angle
Authors : Lamzouri, Youness (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : For a non-principal Dirichlet character $\chi$ modulo $q$, the classical Pólya-Vinogradov inequality asserts that
$M (\chi) := \underset{x}{max}$$| \sum_{n \leq x}$$\chi(n)| = O (\sqrt{q} log$ $q)$.
This was improved to $\sqrt{q} log$ $log$ $q$ by Montgomery and Vaughan, assuming the Generalized Riemann hypothesis GRH. For quadratic characters, this is known to be optimal, owing to an unconditional omega result due to Paley. In this talk, we shall present recent results on higher order character sums. In the first part, we discuss even order characters, in which case we obtain optimal omega results for $M(\chi)$, extending and refining Paley's construction. The second part, joint with Alexander Mangerel, will be devoted to the more interesting case of odd order characters, where we build on previous works of Granville and Soundararajan and of Goldmakher to provide further improvements of the Pólya-Vinogradov and Montgomery-Vaughan bounds in this case. In particular, assuming GRH, we are able to determine the order of magnitude of the maximum of $M(\chi)$, when $\chi$ has odd order $g \geq 3$ and conductor $q$, up to a power of $log_4 q$ (where $log_4$ is the fourth iterated logarithm).

MSC Codes :
11L40 - Estimates on character sums
11M06 - $ \zeta (s)$ and $L(s, \chi)$
11N13 - Primes in progressions
11N37 - Asymptotic results on arithmetic functions

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : French
    Available date : 01/06/17
    Conference Date : 25/05/17
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:44:58
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-05-25_Lamzouri.mp4

Information on the Event

Event Title : Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme
Event Organizers : Dartyge, Cécile ; Drmota, Michael ; Martin, Bruno ; Mauduit, Christian ; Rivat, Joël ; Stoll, Thomas
Dates : 22/05/17 - 26/05/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1595.html

Citation Data

DOI : 10.24350/CIRM.V.19171903
Cite this video as: Lamzouri, Youness (2017). Large character sums. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19171903
URI : http://dx.doi.org/10.24350/CIRM.V.19171903

See Also

Bibliography



Bookmarks Report an error