En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Sums of three squares and Noether-Lefschetz loci

Bookmarks Report an error
Multi angle
Authors : Benoist, Olivier (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : It is a theorem of Hilbert that a real polynomial in two variables that is nonnegative is a sum of 4 squares of rational functions. Cassels, Ellison and Pfister have shown the existence of such polynomials that are not sums of 3 squares of rational functions. In this talk, we will prove that those polynomials that may be written as sums of 3 squares are dense in the set of nonnegative polynomials. The proof is Hodge-theoretic.

MSC Codes :
11E25 - Sums of squares and representations by other particular quadratic forms
14D07 - Variation of Hodge structures
14M12 - Determinantal varieties
14Pxx - Real algebraic and real analytic geometry

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 21/09/2017
    Conference Date : 21/09/2017
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Applications
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:06:05
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-09-21_Benoist.mp4

Information on the Event

Event Title : Perspectives in real geometry / Perspectives en géométrie réelle
Event Organizers : Brugallé, Erwan ; Itenberg, Ilia ; Shustin, Eugenii
Dates : 18/09/2017 - 22/09/2017
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1782.html

Citation Data

DOI : 10.24350/CIRM.V.19222303
Cite this video as: Benoist, Olivier (2017). Sums of three squares and Noether-Lefschetz loci. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19222303
URI : http://dx.doi.org/10.24350/CIRM.V.19222303

See Also

Bibliography



Bookmarks Report an error