Authors : ... (Author of the conference)
... (Publisher )
Abstract :
In the first part, we describe the canonical model structure on the category of strict $\omega$-categories and how it transfers to related subcategories. We then characterize the cofibrant objects as $\omega$-categories freely generated by polygraphs and introduce the key notion of polygraphic resolution. Finally, by considering a monoid as a particular $\omega$-category, this polygraphic point of view will lead us to an alternative definition of monoid homology, which happens to coincide with the usual one.
MSC Codes :
18D05
- Double categories, $2$-categories, bicategories, hypercategories
18G10
- Resolutions; derived functors
18G50
- Nonabelian homological algebra
18G55
- Homotopical algebra
Language : English
Available date : 28/09/2017
Conference Date : 28/09/2017
Subseries : Research talks
arXiv category : Category Theory ; Algebraic Topology
Mathematical Area(s) : Algebra ; Logic and Foundations ; Topology
Format : MP4 (.mp4) - HD
Video Time : 01:22:19
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2017-09-28_Metayer_Part3.mp4
|
Event Title : Categories in homotopy theory and rewriting / Catégories pour la théorie de l'homotopie et la réécriture Dates : 25/09/2017 - 29/09/2017
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1773.html
DOI : 10.24350/CIRM.V.19224603
Cite this video as:
(2017). Homotopy theory of strict $\omega$-categories and its connections with homology of monoids - Lecture 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19224603
URI : http://dx.doi.org/10.24350/CIRM.V.19224603
|
See Also
Bibliography
- Beke, T. (2000). Sheafifiable homotopy model categories. Mathematical Proceedings of the Cambridge Philosophical Society, 129(3), 447-475 - http://dx.doi.org/10.1017/s0305004100004722
- Burroni, A. (1993). Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science, 115(1), 43-62 - http://dx.doi.org/10.1016/0304-3975(93)90054-w
- Hovey, M. (1999). Model Categories. Providence, RI: American Mathematical Society - https://zbmath.org/?q=an:0909.55001
- Lafont, Y., & Metayer, F. (2009). Polygraphic resolutions and homology of monoids. Journal of Pure and Applied Algebra, 213(6), 947-968 - http://dx.doi.org/10.1016/j.jpaa.2008.10.005
- Lafont, Y., Metayer, F., & Worytkiewicz, K. A folk model structure on omega-cat. Advances in Mathematics, 224(3), 1183-1231 - http://dx.doi.org/10.1016/j.aim.2010.01.007
- Metayer, F. (2008). Cofibrant objects among higher-dimensional categories. Homology, Homotopy and Applications, 10(1), 181-203 - http://dx.doi.org/10.4310/hha.2008.v10.n1.a7
- Street, R. (1987). The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3), 283-335 - http://dx.doi.org/10.1016/0022-4049(87)90137-x