En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On a difference between two methods of low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces

Bookmarks Report an error
Multi angle
Authors : Randrianantoanina, Beata (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970's. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of branches.
In this talk we will outline a proof that the above mentioned embeddability results cannot be obtained using the embedding method which was used for trees by Bourgain (1986) and for binary branching diamonds and Laakso graphs by Johnson and Schechtman (2009), and which is based on a classical James' characterization of superreflexivity (the factorization between the summing basis and the unit vector basis of $\ell_1$). Our proof uses a “self-improvement” argument and the Ramsey theorem.
Joint work with M.I. Ostrovskii.

Keywords : diamond graph; equal-signs-additive sequence; metric characterization; superreflexive Banach space

MSC Codes :
05C12 - Distance in graphs
46B07 - Local theory of Banach spaces
46B10 - Duality and reflexivity
46B85 - Embeddings of discrete metric spaces into Banach spaces; applications
30L05 - Geometric embeddings of metric spaces

Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1755/Randrianantoanina.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/03/2018
    Conference Date : 06/03/2018
    Subseries : Research talks
    arXiv category : Functional Analysis ; Metric Geometry
    Mathematical Area(s) : Analysis and its Applications ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:47:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-03-06_Randrianantoanina.mp4

Information on the Event

Event Title : Non linear functional analysis / Analyse fonctionnelle non linéaire
Event Organizers : Albiac, Fernando ; Godefroy, Gilles ; Lancien, Gilles
Dates : 05/03/2018 - 09/03/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1755.html

Citation Data

DOI : 10.24350/CIRM.V.19371703
Cite this video as: Randrianantoanina, Beata (2018). On a difference between two methods of low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19371703
URI : http://dx.doi.org/10.24350/CIRM.V.19371703

See Also

Bibliography

  • Ostrovskii, M.I., & Randrianantoanina, B. (2017). A new approach to low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. - https://arxiv.org/abs/1609.06618



Bookmarks Report an error