Authors : Carassus, Laurence (Author of the conference)
CIRM (Publisher )
Abstract :
For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. Here, we propose a new approach based on convex duality instead of martingale measures duality: our prices will be expressed using Fenchel conjugate and biconjugate.
This naturally leads to a weak condition of absence of arbitrage opportunity, called Absence of Immediate Profit (AIP), which asserts that the price of the zero claim should be zero. We study the link between (AIP), (NA) and the no-free lunch condition. We show in a one step model that, under (AIP), the super-hedging cost is just the payoff's concave envelop and that (AIP) is equivalent to the non-negativity of the super-hedging prices of some call option.
In the multiple-period case, for a particular, but still general setup, we propose a recursive scheme for the computation of a the super-hedging cost of a convex option. We also give some numerical illustrations.
Keywords : financial market models; super-hedging prices; no-arbitrage condition; conditional support; essential suprenum
MSC Codes :
49N15
- Duality theory
60G42
- Martingales with discrete parameter
90C15
- Stochastic programming
91G10
- Portfolio theory
Film maker : Hennenfent, Guillaume
Language : English
Available date : 18/09/2018
Conference Date : 06/09/2018
Subseries : Research talks
arXiv category : Mathematical Finance
Mathematical Area(s) : Probability & Statistics
Format : MP4 (.mp4) - HD
Video Time : 00:33:25
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2018-09-06_Carassus.mp4
|
Event Title : Innovative Research in Mathematical Finance / Recherche innovante en mathématiques financières Event Organizers : Callegaro, Giorgia ; Jeanblanc, Monique ; Lépinette, Emmanuel ; Molchanov, Ilya ; Schweizer, Martin ; Touzi, Nizar Dates : 03/09/2018 - 07/09/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1816.html
DOI : 10.24350/CIRM.V.19444203
Cite this video as:
Carassus, Laurence (2018). Pricing without martingale measure. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19444203
URI : http://dx.doi.org/10.24350/CIRM.V.19444203
|
See Also
Bibliography
- E. N. Barron, P. Cardaliaguet, and R. Jensen, Conditional Essential Suprema with Applications, Applied Mathematics and Optimization, vol.48, issue.3, pp.229-253, 2003 - https://dx.doi.org/10.1007/s00245-003-0776-4
- J. Baptiste, L. Carassus, & E. Lépinette. Pricing without martingale measure - https://arxiv.org/abs/1807.04612
- B. Bensaid, J. P. Lesne, H. Pagès, and J. Scheinkman, Derivate asset pricing with transaction costs, Mathematical Finance, vol.15, issue.4, pp.63-86, 1992 - https://dx.doi.org/10.2307/2328113
- L. Carassus, E. Gobet, and E. Temam, A Class of Financial Products and Models Where Super-replication Prices are Explicit, Stochastic Processes and Applications to Mathematical Finance, 2006 - https://dx.doi.org/10.1142/9789812770448_0004
- A. S. Cherny, Pricing with Coherent Risk, Theory of Probability & Its Applications, vol.52, issue.3, pp.389-415 - https://dx.doi.org/10.1137/S0040585X97983158
- E. C. Dalang, A. Morton, and W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics and Stochastic Reports, vol.19, issue.2, pp.185-201, 1990 - https://dx.doi.org/10.1017/S0001867800016360
- F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, 2006 - http://dx.doi.org/10.1007/978-3-540-31299-4
- H. Föllmer and D. Kramkov, Optional Decompositions under Constraints, Probability Theory and Related Fields, pp.1-25, 1997 - http://dx.doi.org/10.1007/s004400050122
- J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, vol.20, issue.3, pp.381-408, 1979 - https://dx.doi.org/10.1016/0022-0531(79)90043-7
- J. M. Harrison and S. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and their Applications, pp.215-260, 1981 - https://dx.doi.org/10.1016/0304-4149(81)90026-0
- C. Hess, Set-valued integration and set-valued probability theory: An overview, Handbook of Measure Theory, pp.617-673, 2002 - https://doi.org/10.1016/B978-044450263-6/50015-4
- Y. Kabanov and M. Safarian, Markets with transaction costs. Mathematical Theory, 2009 - https://dx.doi.org/10.1007/978-3-540-68121-2
- Y. Kabanov and E. Lépinette, Essential supremum with respect to a random partial order, Journal of Mathematical Economics, vol.49, issue.6, pp.478-487, 2013 - https://dx.doi.org/10.1016/j.jmateco.2013.07.002
- D. Kreps, Arbitrage and equilibrium in economies with infinitely many commodities, Journal of Mathematical Economics, vol.8, issue.1, pp.15-35, 1981 - https://dx.doi.org/10.1016/0304-4068(81)90010-0
- E. Lépinette and I. Molchanov, Conditional cores and conditional convex hulls of random sets - https://arxiv.org/abs/1711.10303v1
- E. Lépinette and T. Tran, Approximate Hedging in a Local Volatility Model with Proportional Transaction Costs, Applied Mathematical Finance, vol.342, issue.4, pp.313-341, 2014 - https://dx.doi.org/10.1214/aoap/1060202836
- G. N. Milstein, The Probability Approach to Numerical Solution of Nonlinear Parabolic Equations. Numerical methods for partial differential equations, pp.490-522, 2002 - https://doi.org/10.1002/num.10020
- R. T. Rockafellar, Convex analysis, 1972 - https://dx.doi.org/10.1515/9781400873173
- R. T. Rockafellar and R. J. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften, 1998 - https://dx.doi.org/10.1007/978-3-642-02431-3