En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stable phase transitions: from nonlocal to local

Bookmarks Report an error
Multi angle
Authors : Serra, Joaquim (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining why the stability assumption gives stronger information in presence of nonlocal interactions. We will also comment on the open problems and obstructions in trying to make the nonlocal estimates robust as the long-range (or nonlocal) interactions become short-range (or local).

Keywords : phase transition; nonlocal minimal surfaces; stability; short-range interaction; long-range interaction

MSC Codes :
35B35 - Stability of solutions of PDE
49Q05 - Minimal surfaces
53A10 - Minimal surfaces, surfaces with prescribed mean curvature
82B26 - Phase transitions (general)
35R11 - Fractional partial differential equations

Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1862/Serra.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/01/2019
    Conference Date : 12/12/2018
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:32
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-12-12_Serra.mp4

Information on the Event

Event Title : Non standard diffusions in fluids, kinetic equations and probability / Diffusions non standards en mécanique des fluides, équations cinétiques et probabilités
Event Organizers : Imbert, Cyril ; Mouhot, Clément ; Tristani, Isabelle
Dates : 10/12/2018 - 14/12/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1862.html

Citation Data

DOI : 10.24350/CIRM.V.19483203
Cite this video as: Serra, Joaquim (2018). Stable phase transitions: from nonlocal to local. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19483203
URI : http://dx.doi.org/10.24350/CIRM.V.19483203

See Also

Bibliography

  • Cabré, X., Cinti, E., & Serra, J. (2018). Flatness of stable nonlocal phase transitions in in $\mathbb {R}^ 3$, forthcoming preprint -

  • Cabré, X., Cinti, E., & Serra, J. (2017). Stable $s$-minimal cones in $\mathbb {R}^ 3$ are flat for $s\sim 1$.〈arXiv:1710.08722〉 - https://arxiv.org/abs/1710.08722

  • Cinti, E., Serra, J., & Valdinoci, E. Quantitative flatness results and BV-estimates for nonlocal minimal surfaces, to appear in Journal of Differential Geometry -

  • Dipierro, S., Serra, J., & Valdinoci, E. Improvement of flatness for nonlocal phase transitions, to appear in American Journal of Mathematics -

  • Figalli, A., & Serra, J. (2017). On stable solutions for boundary reactions: a De Giorgi type result in dimension 4+1.〈arXiv:1705.02781〉 - https://arxiv.org/abs/1705.02781



Bookmarks Report an error