En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Tilings of a hexagon and non-hermitian orthogonality on a contour

Bookmarks Report an error
Multi angle
Authors : Kuijlaars, Arno (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials in case a = 1 and then their zeros cluster along an open arc on the unit circle as the degree tends to infinity.
For general a, the polynomials are analyzed by a Riemann-Hilbert problem. It follows that the zeros exhibit an interesting transition for the value of a = 1/9, when the open arc closes to form a closed curve with a density that vanishes quadratically. The transition is described by a Painlevé II transcendent.
The polynomials arise in a lozenge tiling problem of a hexagon with a periodic weighting. The transition in the behavior of zeros corresponds to a tacnode in the tiling problem.
This is joint work in progress with Christophe Charlier, Maurice Duits and Jonatan Lenells and we use ideas that were developed in [2] for matrix valued orthogonal polynomials in connection with a domino tiling problem for the Aztec diamond.

MSC Codes :
05B45 - Tessellation and tiling problems
33C45 - Orthogonal polynomials and functions (Chebyshev, Legendre, Gegenbauer, Jacobi, Laguerre, Hermite, Hahn, etc.)
52C20 - Tilings in $2$ dimensions
60B20 - Random matrices (probabilistic aspects)

Additional resources :
https://www.cirm-math.fr/RepOrga/2104/Slides/Kuijlaars-Luminy.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 09/05/2019
    Conference Date : 11/04/2019
    Subseries : Research talks
    arXiv category : Classical Analysis and ODEs ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:21
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-11_Kuijlaars.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19516503
Cite this video as: Kuijlaars, Arno (2019). Tilings of a hexagon and non-hermitian orthogonality on a contour. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19516503
URI : http://dx.doi.org/10.24350/CIRM.V.19516503

See Also

Bibliography

  • Duits, M., & Kuijlaars, A. B. (2017). The two periodic Aztec diamond and matrix valued orthogonal polynomials. arXiv preprint arXiv:1712.05636. - https://arxiv.org/abs/1712.05636v2



Bookmarks Report an error